twap算法
1. 根据特定的时间间隔在每个时间点上平均下单的算法是什么
根据特定的时间间隔在每个时间点上平均下单的算法是时间加权平均价格算法(TWAP)。
时间加权平均价格算法,是一种最简单的传统算法交易策略。TWAP模型设计的目的是使交易对市场影响减小的同时提供一个较低的平均成交价格,从而达到减小交易成本的目的。在分时成交量无法准确估计的情况下,该模型可以较好地实现算法交易的基本目的。
用公式来表示就是:
存货的加权平均单位成本=(月初结存货成本+本月购入存货成本)/(月初结存存货数量+本月购入存货数量)。
月末库存存货成本=月末库存存货数量×存货加权平均单位成本。
本期发出存货的成本=本期发出存货的数量×存货加权平均单位成本或=期初存货成本+本期收入存货成本-期末存货成本。
2. 在自主权限内什么通过交易系统向交易室下达交易指令
在自主权限内基金经理通过交易系统向交易室下达交易指令。交易系统或相关负责人员审核投资指令的合法合规性,违规指令将被拦截,反馈给基金经理。其他指令被分发给交易员。交易员接收到指令后有权根据自身对市场的判断选择合适时机完成交易。基金公司投资交易包括形成投资策略、构建投资组合、执行交易指令、绩效评估与组合调整、风险控制等环节。
拓展资料:
1、算法交易是通过数学建模将常用交易理念同化为自动化的交易模型,并借助计算机强大的存储与计算功能实现交易自动化(或半自动化)的一种交易方式。 交易算法的核心是其背后的量化交易模型,而模型的优劣取决于人的交易理念和基于数据的量化分析,以及两者的有效结合。
2、算法与人(交易员)的互动是至关重要的,两者之间互为补充:人(交易员)教授“算法”交易理念,反过来被训练过的算法可以帮助人(交易员)实现快速的交易执行。
3、常见的算法交易策略简介如下: (1)成交量加权平均价格算法(VWAP),是最基本的交易算法之一,旨在下单时以尽可能接近市场按成交量加权的均价进行,以尽量降低该交易对市场的冲击。 (2)时间加权平均价格算法(TwAP),是根据特定的时间间隔,在每个时间点上平均下单的算法。 (3)跟量算法(TVOL),旨在帮助投资者跟上市场交易量。若交易量放大则同样放大这段时间内的下单成交量,反之则相应降低这段时间内的下单成交量。交易时间主要依赖交易 期间市场的活跃程度。 (4)执行偏差算法(Is),是在尽量不造成大的市场冲击的情况下,尽快以接近客户委托时的市场成交价格来完成交易的最优化算法。
3. wcc拆单软件全名叫什么
lmos WCC。
拆单软件是基于拆单算法(主流为VWAP和TWAP)来实现股票自动化交易系统,最大程度减少对市场影响,减少人工交易费用,提高效率,减小市场摩擦,降低交易冲击成本。适合有减持需求的上市公司股东随时根据市场卖出股票。云熙拆单软件官方版是一款非常专业且是专门针对衣柜、橱柜等家具的专业设计软件,快速、准确设计出家具效果和效果图纸,并自动拆单生产,操作人员无需CAD基础,云熙拆单软件非常适合板式家具、橱柜、衣柜、桌子等生产企业使用。
4. 量化交易有什么类型
闪牛分析:
概念
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
特点
定量投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于定量投资管理是“定性思想的量化应用”,更加强调数据。量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
应用编辑
量化投资技术包括多种具体方法,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。在此,以统计套利和算法交易为例进行阐述。
1、统计套利
统计套利是利用资产价格的历史统计规律进行的套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。
统计套利的主要思路是先找出相关性最好的若干对投资品种,再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓,买进被相对低估的品种、卖空被相对高估的品种,等价差回归均衡后获利了结。股指期货对冲是统计套利较长采用的一种操作策略,即利用不同国家、地区或行业的指数相关性,同时买入、卖出一对指数期货进行交易。在经济全球化条件下,各个国家、地区和行业股票指数的关联性越来越强,从而容易导致股指系统性风险的产生,因此,对指数间的统计套利进行对冲是一种低风险、高收益的交易方式。
2、算法交易。
算法交易又称自动交易、黑盒交易或机器交易,是指通过设计算法,利用计算机程序发出交易指令的方法。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格,甚至包括最后需要成交的资产数量。
算法交易的主要类型有: (1) 被动型算法交易,也称结构型算法交易。该交易算法除利用历史数据估计交易模型的关键参数外,不会根据市场的状况主动选择交易时机和交易的数量,而是按照一个既定的交易方针进行交易。该策略的的核心是减少滑价(目标价与实际成交均价的差)。被动型算法交易最成熟,使用也最为广泛,如在国际市场上使用最多的成交加权平均价格(VWAP)、时间加权平均价格(TWAP)等都属于被动型算法交易。 (2) 主动型算法交易,也称机会型算法交易。这类交易算法根据市场的状况作出实时的决策,判断是否交易、交易的数量、交易的价格等。主动型交易算法除了努力减少滑价以外,把关注的重点逐渐转向了价格趋势预测上。 (3) 综合型算法交易,该交易是前两者的结合。这类算法常见的方式是先把交易指令拆开,分布到若干个时间段内,每个时间段内具体如何交易由主动型交易算法进行判断。两者结合可达到单纯一种算法无法达到的效果。
算法交易的交易策略有三:一是降低交易费用。大单指令通常被拆分为若干个小单指令渐次进入市场。这个策略的成功程度可以通过比较同一时期的平均购买价格与成交量加权平均价来衡量。二是套利。典型的套利策略通常包含三四个金融资产,如根据外汇市场利率平价理论,国内债券的价格、以外币标价的债券价格、汇率现货及汇率远期合约价格之间将产生一定的关联,如果市场价格与该理论隐含的价格偏差较大,且超过其交易成本,则可以用四笔交易来确保无风险利润。股指期货的期限套利也可以用算法交易来完成。三是做市。做市包括在当前市场价格之上挂一个限价卖单或在当前价格之下挂一个限价买单,以便从买卖差价中获利。此外,还有更复杂的策略,如“基准点“算法被交易员用来模拟指数收益,而”嗅探器“算法被用来发现最动荡或最不稳定的市场。任何类型的模式识别或者预测模型都能用来启动算法交易。
潜在风险
量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是目前量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
5. 有哪些算法交易策略
算法交易,也称为自动交易,黑盒交易,是利用电子平台,输入涉及算法的交易指令,以执行预先设定好的交易策略。算法中包含许多变量,包括时间,价格,交易量,或者在许多情况下,由"机器人"发起指令,而无需人工干预。算法交易广泛应用于投资银行,养老基金,共同基金,以及其他买方机构投资者,以把大额交易分割为许多小额交易来应付市场风险和冲击。卖方交易员,例如做市商和一些对冲基金,为市场提供流动性,自动生成和执行指令。
6. 国泰安信息技术有限公司的产品
CSMAR中国财经数据库:研发理念充分借鉴了芝加哥大学CRSP、标准普尔Compustat、纽约交易所TAQ、Thomson、GSIOnline等国际知名数据库的成功经验,并结合中国国情精心设计而成。该数据库是国内目前规模最大、信息最精准的金融、经济数据库,由股票、基金、债券、金融衍生产品、上市公司、经济、行业、高频数据8大系列及个性化数据服务构成。
金融实验室:借鉴美国麻省理工学院的Laboratory for Financial Engineering和新加坡国立大学的Center of Financial Engineering等国际知名金融实验室的开发经验,集教研工具系统与资源、实训系统与课程设计、学术交流、成果转化于一体。其中,实训系统包括银行类、保险类、证券类、企业管理类、财会类等。
全球金融信息分析系统——“国泰安市场通”:是一款媲美Bloomberg的综合金融信息分析系统,以目前国内最快的行情刷新速度接入上证交易所高速Level Ⅱ数据和全球60多个国家及地区的股票、债券、期货、外汇、金融衍生品等上万种金融产品的实时或延时行情,使用户快捷获取精确、详细、全面、深入的市场数据和信息。同时,丰富的画面自定义、MVX Excel导出、指数化基金自动配置等个性化功能协助用户进行实时监控,有效避险,抢占投资先机。
更值得提出的是,该系统拥有强大数据压缩和传输技术(基于世界领先的百万分之一秒量级的高速压缩技术),其行情刷新频度和速度目前在国内同行业中是最快的,完全与交易所同步。其多屏显示技术可支持一台主机控制多达8个屏幕的同时展示,如果使用大屏,可作为mini交易所安装在交易室、会议室等场所。
国泰安股指期货套利系统:由国泰安和台湾宝来金融集团携手开发。可查看实时行情;内嵌Excel策略平台,让用户以便捷的Excel形式,享受宝来近10年的分析数据及投资策略,并可利用国泰安CSMAR数据库,快捷自由地创新交易模型;可通过灵活的投资组合策略和机会监控策略进行套利。
在台湾,该系统深受证券商、基金公司、QFII、私募基金认可;在大陆,受到国信证券、财富证券、太保资产管理公司等数十家金融机构瞩目。
国泰安算法交易系统V1.0:算法交易,这一合法的“黑箱套利”交易模式,正在迅速地被越来越多的投资机构重视。国泰安算法交易系统V1.0采用国际最主流 的“VWAP”、“TWAP”等交易模型。用户通过灵活的交易策略配置,增加资产配置成功率,提高回报率。
金融专业培训:以敏锐的财经嗅觉,提供前瞻性、实战式的金融培训,包括股指期货实盘模拟培训、算法交易培训等。
国泰安万能大屏幕管理软件: 国泰安万能大屏幕管理软件以大屏幕应用为基础,对屏幕布局、屏幕管理、数据源支持、系统扩展性等方面进行应用性开发。该软件主要向客户提供实时金融行情与资讯展示,对于各行业特别是金融机构在大厅、贵宾室、会议室、户外宣传、金融实验室等地方的内容展示及形象宣传将达到事半功倍的效果。
7. 量化投资
没有你想的书
我多年来都有关注这方面的书 可是也没有在国内找到
数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:
一、估值与选股
估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。
选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:
资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略
基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。
多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显着性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。
动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。
二、资产配置
资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:
战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。
三、股价预测
股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。
主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。
四、绩效评估
作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。
绩效评估模型 / 指标
绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解
模型 / 指标
T-M 模型
H-M 模型
GII 模型
C-L 模型
资产配置收益
证券选择收益
行业选择收益
行业内个股选择收益
RAROC
Sharp, Stutzer
Treynor, Jensen
, ,
双向表分析
时间序列相关性
总风险收益
系统风险收益
分散化投资收益
五、基于行为金融学的投资策略
上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。
行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。
六、程序化交易与算法交易策略
根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。
算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。
综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货、融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。
8. 什么是拆单软件
拆单软件是基于拆单算法(主流为VWAP和TWAP)来实现股票自动化交易系统,最大程度减少对市场影响,减少人工交易费用,提高效率,减小市场摩擦,降低交易冲击成本。适合有减持需求的上市公司股东随时根据市场卖出股票。
9. 如何建立自己的算法交易
在股票市场中交易过两、三年的人,几乎都有一套自己的交易方法。
虽然你有方法但如果还没有形成交易系统,那也先别着急去勉强建立,因交易系统是自然形成的.并不可人为刻意能建起来的。就好比计划经济与市场经济不断的适应市场的变化,时间长了,如果你还能在市场中生存.交易系统自然形成。而如果过早的固定自己的交易行为使之系统化,固定不变,在没有充分的了解市场的前提下,面临的只能是品尝失败。
一套自己的交易系统,不是一劳永益的盖世绝招,而是你对市场每一个细微之处都能深入了解---达到很细微.并且很全面。要总结经验,形成框架,这个框架就是你对市场的初步认识,它决定着你的行为,也就是你的交易。随着研究的深入,逐渐系统化,而这个框架至关重要,决定你今后的发展方向,不要去计划什么,在你眼前只有一个目标,深入分析市场,不断实践总结,周而复始,直到有一天你的交易系统就会自然成型。
曾有一个用波浪理论的高手和我交流,他说其经常能够预测到价格波动的高低点,并且因此而获利。但总体上的交易成绩并不是很理想。
在我的大多数朋友开始向我学习的时候,几乎都有一些实战经验,事实上,很多人的成绩相当不错。但是在交易的系统性方面,却有明显的欠缺。
如果你想长期稳定的获利,那么整体的交易应该是一个过程,而绝不是简简单单的一次预测或者一次全仓买入。其间至少包括:
另一方面,大多数投机者相信有一个通向市场的魔术:一个指标,一个形态,或者一个机械的交易系统,他们还肯定一小部分人正在使用着-------我在网上还见过售价24万元的一个公式,据说可百战百胜--------他们努力的想揭开这个魔术的秘密,从此而获利。
正确答案是:有,且答案就在你自己身上。
我可明确的告诉你:成功交易的一个秘密就是找到一套适合你的交易系统。这交易系统是非机械的,适合你自己个性的,有完善的交易思想、细致的市场分析和整体操作方案的。
交易系统,或说系统的交易方法,才是你长期稳定获利的正确方法。