当前位置:首页 » 操作系统 » 视觉算法招聘

视觉算法招聘

发布时间: 2022-08-16 18:32:38

A. 视觉算法工程师有前途吗

现在的视觉算法工程师是很紧缺的,
只要去应聘,招聘的岗位是很多的。
所以也是很有前途的专业。

B. 计算机视觉算法是做什么的

通过C/C++或java任一种编程语言,python/ perl/shell中任一种脚本语言,实现数据分析和挖掘工具,最终通过算法实现使用计算机及相关设备对生物视觉的一种模拟。

C. 对自己未来的职业有什么规划

我是工科生,我的专业是机器人工程以下是我的职业规划。

首先在开始之前我想谈谈职业规划的好处。有了准确的职业规划好处是有很多的,我这里先分享一部分。 职业规划是立足于通过自身努力可实现的事实依据,并非只是凭空的美丽幻想或不着边际的遐思遥想。有自我生涯规划的人会有清晰的发展目标,每个人的人生不仅与收入有关,还与自己的生涯规划发展有关。有目标的人才能抗拒短期的诱惑,有目标的人才会坚定的朝着自己的方向前进…

以上就是我在大学阶段写的职业规划,我真切的希望能对你有所帮助!

D. 华为-机器视觉算法工程师 属于哪个部门

中国区交付与服务业务部。招聘的工程师用来设计确保手机生产的一些工业视觉项目。

E. 算法工程师 就业前景

一、算法工程师简介
(通常是月薪15k以上,年薪18万以上,只是一个概数,具体薪资可以到招聘网站如拉钩,猎聘网上看看)
算法工程师目前是一个高端也是相对紧缺的职位;
算法工程师包括
音/视频算法工程师(通常统称为语音/视频/图形开发工程师)、图像处理算法工程师、计算机视觉算法工程师、通信基带算法工程师、信号算法工程师、射频/通信算法工程师、自然语言算法工程师、数据挖掘算法工程师、搜索算法工程师、控制算法工程师(云台算法工程师,飞控算法工程师,机器人控制算法)、导航算法工程师(
@之介
感谢补充)、其他【其他一切需要复杂算法的行业】
专业要求:计算机、电子、通信、数学等相关专业;
学历要求:本科及其以上的学历,大多数是硕士学历及其以上;
语言要求:英语要求是熟练,基本上能阅读国外专业书刊,做这一行经常要读论文;
必须掌握计算机相关知识,熟练使用仿真工具MATLAB等,必须会一门编程语言。
算法工程师的技能树(不同方向差异较大,此处仅供参考)
1 机器学习
2 大数据处理:熟悉至少一个分布式计算框架Hadoop/Spark/Storm/ map-rece/MPI
3 数据挖掘
4 扎实的数学功底
5 至少熟悉C/C++或者Java,熟悉至少一门编程语言例如java/python/R
加分项:具有较为丰富的项目实践经验(不是水论文的哪种)
二、算法工程师大致分类与技术要求
(一)图像算法/计算机视觉工程师类
包括
图像算法工程师,图像处理工程师,音/视频处理算法工程师,计算机视觉工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:机器学习,模式识别
l
技术要求:
(1) 精通DirectX HLSL和OpenGL GLSL等shader语言,熟悉常见图像处理算法GPU实现及优化;
(2) 语言:精通C/C++;
(3) 工具:Matlab数学软件,CUDA运算平台,VTK图像图形开源软件【医学领域:ITK,医学图像处理软件包】
(4) 熟悉OpenCV/OpenGL/Caffe等常用开源库;
(5) 有人脸识别,行人检测,视频分析,三维建模,动态跟踪,车识别,目标检测跟踪识别经历的人优先考虑;
(6) 熟悉基于GPU的算法设计与优化和并行优化经验者优先;
(7) 【音/视频领域】熟悉H.264等视频编解码标准和FFMPEG,熟悉rtmp等流媒体传输协议,熟悉视频和音频解码算法,研究各种多媒体文件格式,GPU加速;
应用领域:
(1) 互联网:如美颜app
(2) 医学领域:如临床医学图像
(3) 汽车领域
(4) 人工智能
相关术语:
(1) OCR:OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程
(2) Matlab:商业数学软件;
(3) CUDA: (Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台(由ISA和GPU构成)。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题
(4) OpenCL: OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。
(5) OpenCV:开源计算机视觉库;OpenGL:开源图形库;Caffe:是一个清晰,可读性高,快速的深度学习框架。
(6) CNN:(深度学习)卷积神经网络(Convolutional Neural Network)CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。
(7) 开源库:指的是计算机行业中对所有人开发的代码库,所有人均可以使用并改进代码算法。
(二)机器学习工程师
包括
机器学习工程师
要求
l
专业:计算机、数学、统计学相关专业;
l
技术领域:人工智能,机器学习
l
技术要求:
(1) 熟悉Hadoop/Hive以及Map-Rece计算模式,熟悉Spark、Shark等尤佳;
(2) 大数据挖掘;
(3) 高性能、高并发的机器学习、数据挖掘方法及架构的研发;
应用领域:
(1)人工智能,比如各类仿真、拟人应用,如机器人
(2)医疗用于各类拟合预测
(3)金融高频交易
(4)互联网数据挖掘、关联推荐
(5)无人汽车,无人机

相关术语:
(1) Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(三)自然语言处理工程师
包括
自然语言处理工程师
要求
l
专业:计算机相关专业;
l
技术领域:文本数据库
l
技术要求:
(1) 熟悉中文分词标注、文本分类、语言模型、实体识别、知识图谱抽取和推理、问答系统设计、深度问答等NLP 相关算法;
(2) 应用NLP、机器学习等技术解决海量UGC的文本相关性;
(3) 分词、词性分析、实体识别、新词发现、语义关联等NLP基础性研究与开发;
(4) 人工智能,分布式处理Hadoop;
(5) 数据结构和算法;
应用领域:
口语输入、书面语输入
、语言分析和理解、语言生成、口语输出技术、话语分析与对话、文献自动处理、多语问题的计算机处理、多模态的计算机处理、信息传输与信息存储 、自然语言处理中的数学方法、语言资源、自然语言处理系统的评测。

相关术语:
(2) NLP:人工智能的自然语言处理,NLP (Natural Language Processing) 是人工智能(AI)的一个子领域。NLP涉及领域很多,最令我感兴趣的是“中文自动分词”(Chinese word segmentation):结婚的和尚未结婚的【计算机中却有可能理解为结婚的“和尚“】

(四)射频/通信/信号算法工程师类
包括
3G/4G无线通信算法工程师, 通信基带算法工程师,DSP开发工程师(数字信号处理),射频通信工程师,信号算法工程师
要求
l
专业:计算机、通信相关专业;
l
技术领域:2G、3G、4G,BlueTooth(蓝牙),WLAN,无线移动通信, 网络通信基带信号处理
l
技术要求:
(1) 了解2G,3G,4G,BlueTooth,WLAN等无线通信相关知识,熟悉现有的通信系统和标准协议,熟悉常用的无线测试设备;
(2) 信号处理技术,通信算法;
(3) 熟悉同步、均衡、信道译码等算法的基本原理;
(4) 【射频部分】熟悉射频前端芯片,扎实的射频微波理论和测试经验,熟练使用射频电路仿真工具(如ADS或MW或Ansoft);熟练使用cadence、altium designer PCB电路设计软件;
(5) 有扎实的数学基础,如复变函数、随机过程、数值计算、矩阵论、离散数学
应用领域:
通信
VR【用于快速传输视频图像,例如乐客灵境VR公司招募的通信工程师(数据编码、流数据)】
物联网,车联网
导航,军事,卫星,雷达
相关术语:
(1) 基带信号:指的是没有经过调制(进行频谱搬移和变换)的原始电信号。
(2) 基带通信(又称基带传输):指传输基带信号。进行基带传输的系统称为基带传输系统。传输介质的整个信道被一个基带信号占用.基带传输不需要调制解调器,设备化费小,具有速率高和误码率低等优点,.适合短距离的数据传输,传输距离在100米内,在音频市话、计算机网络通信中被广泛采用。如从计算机到监视器、打印机等外设的信号就是基带传输的。大多数的局域网使用基带传输,如以太网、令牌环网。
(3) 射频:射频(RF)是Radio Frequency的缩写,表示可以辐射到空间的电磁频率(电磁波),频率范围从300KHz~300GHz之间(因为其较高的频率使其具有远距离传输能力)。射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。高频(大于10K);射频(300K-300G)是高频的较高频段;微波频段(300M-300G)又是射频的较高频段。【有线电视就是用射频传输方式】
(4) DSP:数字信号处理,也指数字信号处理芯片
(五)数据挖掘算法工程师类
包括
推荐算法工程师,数据挖掘算法工程师
要求
l
专业:计算机、通信、应用数学、金融数学、模式识别、人工智能;
l
技术领域:机器学习,数据挖掘
l
技术要求:
(1) 熟悉常用机器学习和数据挖掘算法,包括但不限于决策树、Kmeans、SVM、线性回归、逻辑回归以及神经网络等算法;
(2) 熟练使用SQL、Matlab、Python等工具优先;
(3) 对Hadoop、Spark、Storm等大规模数据存储与运算平台有实践经验【均为分布式计算框架】
(4) 数学基础要好,如高数,统计学,数据结构
l
加分项:数据挖掘建模大赛;
应用领域
(1) 个性化推荐
(2) 广告投放
(3) 大数据分析
相关术语
Map-Rece:MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。
(六)搜索算法工程师
要求
l
技术领域:自然语言
l
技术要求:
(1) 数据结构,海量数据处理、高性能计算、大规模分布式系统开发
(2) hadoop、lucene
(3) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验
(4) 精通Lucene/Solr/Elastic Search等技术,并有二次开发经验;
(5) 精通倒排索引、全文检索、分词、排序等相关技术;
(6) 熟悉Java,熟悉Spring、MyBatis、Netty等主流框架;
(7) 优秀的数据库设计和优化能力,精通MySQL数据库应用 ;
(8) 了解推荐引擎和数据挖掘和机器学习的理论知识,有大型搜索应用的开发经验者优先。
(七)控制算法工程师类
包括了云台控制算法,飞控控制算法,机器人控制算法
要求
l
专业:计算机,电子信息工程,航天航空,自动化
l
技术要求:
(1) 精通自动控制原理(如PID)、现代控制理论,精通组合导航原理,姿态融合算法,电机驱动,电机驱动
(2) 卡尔曼滤波,熟悉状态空间分析法对控制系统进行数学模型建模、分析调试;
l
加分项:有电子设计大赛,机器人比赛,robocon等比赛经验,有硬件设计的基础;
应用领域
(1)医疗/工业机械设备
(2)工业机器人
(3)机器人
(4)无人机飞控、云台控制等

(八)导航算法工程师
要求
l 专业:计算机,电子信息工程,航天航空,自动化
l 技术要求(以公司职位JD为例)
公司一(1)精通惯性导航、激光导航、雷达导航等工作原理;
(2)精通组合导航算法设计、精通卡尔曼滤波算法、精通路径规划算法;
(3)具备导航方案设计和实现的工程经验;
(4)熟悉C/C++语言、熟悉至少一种嵌入式系统开发、熟悉Matlab工具;
公司二(1)熟悉基于视觉信息的SLAM、定位、导航算法,有1年以上相关的科研或项目经历;
(2)熟悉惯性导航算法,熟悉IMU与视觉信息的融合;
应用领域
无人机、机器人等。

F. 中电金信研究院近期有哪些招聘需求

中电金信研究院作为中电金信技术和产品的研发及管理机构,具有丰富的员工福利,包括五险一金、商业保险、年度体检、技能培训、带薪休假、司龄奖励等,目前中电金信在招聘以下岗位,包括计算机视觉算法工程师、AI软件架构师、自然语言处理专家、视觉软件开发工程师、AI产品经理、高级产品管理经理等。具体不妨网络一下。

G. 导航(自动驾驶)和视觉(图象处理)未来前景和就业哪个好

摘要 2020年视觉感知算法工程师招聘职位量 15,2020年自动驾驶算法工程师招聘职位量 59,视觉感知算法工程师低于自动驾驶算法工程师。视觉感知算法工程师等于自动驾驶算法工程师。统计依赖于各大平台发布的公开数据,系统稳定性会影响客观性,仅供参考。

H. 在哪里可以招聘到网络算法专家

这种人才可遇不可求;
像中国四小龙AI企业、像带头大哥华为、二哥中兴、阿里、网络、腾讯都有大把算法工程师,AI大数据分析工程师、深度学习工程师,机器视觉工程师,这些都属于算法专家。

I. 计算机视觉算法工程师笔试主要什么内容

你好,领学网为你解答:计算机视觉部分:1、考察特征点匹配算法,输入两幅图像中的特征点对,输出匹配的特征点对,(128维描述子)距离计算函数已给出无需考虑复杂度。编写伪代码,分析算法复杂度;2、考察图像旋转。左边图像时旋转一定角度后的图像(有黑边),右边为正常图像。已知两幅图像都为WxH,以及左图像与四边的切点A1A2A3A4,设计旋转算法使左图像变换矫正成右图像,编写伪代码,分析算法复杂度及优缺点;3、主要考察双目视觉中的标定知识。给出了双目视觉的成像原理图及相关定理和表达。第一小题,需要证明x'Fx=0x'x为左右图像中的匹配点对,并要求给出F矩阵的秩;第二小题要求推导出最少可由多少对左右图像中匹配点可以推导出F矩阵;4、要求写出图像处理和计算机视觉在无人飞行器中的3个重要应用。给出理由和解决方案并分析。图像处理部分:1、主要考察一维中值滤波,退化为区间滤波编写伪代码,分析算法复杂度;2、主要考察二维中值滤波,编写伪代码,分析算法复杂度;3、如何去除脉冲噪声,图像中有大量随机产生的255和0噪声;4、考察加权中值滤波公式推导以及一维加权中值滤波控制部分:对象举例均为四旋翼无人飞行器,各题目要求设计控制器,给出控制率,还有观测方案设计等等;有一题比较简单就是说明PID的各部分含义以及如何调节。希望帮到你!

热点内容
抗震柱加密区 发布:2025-01-17 03:03:06 浏览:134
幼儿园源码php 发布:2025-01-17 02:41:45 浏览:401
win引导Linux 发布:2025-01-17 02:36:49 浏览:263
ftp是传输类协议吗 发布:2025-01-17 02:36:47 浏览:311
查看电视配置下载什么软件 发布:2025-01-17 02:36:41 浏览:159
宝马x330i比28i多哪些配置 发布:2025-01-17 02:35:59 浏览:573
服务器运维安全云帮手 发布:2025-01-17 02:35:48 浏览:72
c应用编程 发布:2025-01-17 02:35:16 浏览:941
ios清除app缓存数据免费 发布:2025-01-17 02:34:33 浏览:375
微信企业号上传文件 发布:2025-01-17 02:10:28 浏览:64