算法的特性为
① 算法的五个重要特性
算法的五个特征是:有穷性,确切性,输入项,输出项,可行性。实际上就以上五个特性是没法解释算法与程序的区别的。因为算法是程序的概述,程序是算法的实现,算法所具有的特性,程序都具有。如果没有算法的支持,程序只是一堆无序的代码。
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
形式化算法的概念部分源自尝试解决希尔伯特提出的判定问题,并在其后尝试定义有效计算性或者有效方法中成形。这些尝试包括库尔特·哥德尔、Jacques Herbrand和斯蒂芬·科尔·克莱尼分别于1930年、1934年和1935年提出的递归函数,阿隆佐·邱奇于1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾伦·图灵1937年提出的图灵机。即使在当前,依然常有直觉想法难以定义为形式化算法的情况。
② 算法及其特性有哪些
1.算法的重要特性(1)有穷性:一个算法必须在执行有穷步骤之后正常结束,而不能形成无穷循环。
(2)确定性:算法中的每一条指令必须有确切的含义,不能产生多义性。
(2)可行性:算法中的每一条指令必须是切实可执行的,即原则上可以通过已经实现的基本运算执行有限次来实现。
(4)输入:一个算法应该有零个或多个输入。
(5)输出:一个算法应该有一个或多个输出,这些输出是同输入有特定关系的量。
2.算法描述的方法(1)框图描述:该方法使用流程图或N-S图来描述算法。
(2)自然语言描述:该方法采用自然语言,同时添加高级程序设计语言如while、for和if等基本控制语句来描述算法。这类描述方法自然、简洁,但缺乏严谨性和结构性。
(2)类语言描述:这是介于程序设计语言和自然语言之间算法描述形式,其特征是突出算法设计的主体部分而有意忽略某些过于严格的语法细节,如类C或C++的伪语言。这种算法不能直接在计算机上运行,但专业设计人员经常使用它来描述算法,它具有容易编写、阅读和格式统一的特点。
(4)程序设计语言描述:采用某种高级程序设计语言(如C或C++)来描述。这是可以在计算机上运行并获得结果的算法描述。
本课程将采用伪C语言进行算法描述。
2.算法与程序的关系算法的含义与程序十分相似,但二者是有区别的。算法和程序都是用来表达解决问题的逻辑步骤;算法是对解决问题方法的具体描述,程序是算法在计算机中的具体实现;一个程序不一定满足有穷性(死循环),而算法一定满足有穷性;程序中的指令必须是机器可执行的,而算法中的指令则无此限制;一个算法若用计算机语言来书写,则它就可以是一个程序。因此,程序是算法,但算法不一定是程序。4.算法设计要求在算法设计中,对同一个问题可以设计出不同的求解算法。如何评价这些算法的优劣,从而为算法设计和选择提供可靠的依据?通常可从以下四个方面评价算法的质量:
(1)正确性:算法应该能够正确地执行预先规定的功能,并达到所期望的性能要求。
(2)可读性:算法应该好读,以有利于读者对程序的理解,便于调试和修改。
(2)健壮性:算法应具有容错处理。当输入非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
(4)效率与低存储量需求:效率指的是算法执行的时间。对于同一个问题,如果有多种算法可以求解,执行时间短的算法效率高。算法存储量指的是算法执行过程中所需要的最大存储空间。高效率和低存储量这两者与问题的规模有关。
③ 算法的基本特性是什么
算法应该具有以下五个重要的特征:
1,有穷性:算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2,确切性:算法的每一步骤必须有确切的定义;
3,输入项:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4,输出项:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5,可行性:算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
(3)算法的特性为扩展阅读:
对于一个给定的问题,往往可能有好几种量度标准。初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪婪处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。因此,选择能产生问题最优解的最优量度标准是使用贪婪算法的核心。
一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪婪算法求解则特别有效。
若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。
④ 算法的重要特性有哪些呢
算法的五个重要的特征:确定性、可行性、输入、输出、有穷性/有限性。
算法是解决“做什么”和“怎么做”的问题。解决一个问题可能有多种不同的算法,从效率上考虑,其中最为核心的还是算法的速度。因此,解决问题的步骤需要在有限的时间内完成,并且操作步骤中不可以有歧义性语句,以免后继步骤无法继续进行下去。通过对算法概念的分析,可以总结出一个算法必须满足如下 5个特性。
(1)有穷性。一个算法在执行有限步骤后,在有限时间内能够实现的,就称该算法具有有穷性。
有的算法在理论上满足有穷性,在有限的步骤后能够完成,但是计算机可能实际上会执行一天、一年、十年等等。算法的核心就是速度,那么这个算法也就没有意义了。总而言之,有穷性没有特定的限度,取决于人们的需要。
(2)确定性。算法中每一个步骤的表述都应该是确定的、没有歧义的语句。在人们的日常生活中,遇到歧义性语句,可以根据常识、语境等理解,然而还有可能理解错误。计算机不比人脑,不会根据算法的意义来揣测每一个步骤的意思,所以算法的每一步都要有确定的含义。
(3)有零个或多个输入。程序中的算法和数据是相互联系的。算法中,需要输入的是数据的量值。输入可以是多个也可以是零个。其实,零个输入并不是这个算法没有输入,而是这个输入没有直观地显现出来,隐藏在算法本身当中。
(4)有一个输出或多个输出。输出就是算法实现所得到的结果,是算法经过数据加工处理后得到的结果。有的算法输出的是数值,有的是图形,有的输出并不是那么显而易见。没有输出的算法是没有意义的。
(5)可行性。算法的可行性就是指每一个步骤都能够有效地执行,并得到确定的结果,而且能够用来方便地解决一类问题。
⑤ 算法有哪五个特性
算法的五个特性分别是:有穷性、确切性、输入项、输出项、可行性。
1、有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2、确切性
算法的每一步骤必须有确切的定义;
3、输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4、输出项
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性
算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步骤,即每个计算步骤都可以在有限时间内完成(也称之为有效性)。
(5)算法的特性为扩展阅读:
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
⑥ 算法的特征是什么
算法的特征是有穷性,确切性,输入项。
1、有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止。
2、确切性
算法的每一步骤必须有确切的定义。
3、输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。
主要介绍
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
⑦ 计算机的算法具有哪些特性
计算机的算法具有可行性,有穷性、输入输出、确定性。
计算机算法特点
1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。
2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。
3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。
4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的。
5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。
拓展资料:
重要算法
A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的NPC的移动计算,或线上游戏的BOT的移动计算上。该算法像Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。
Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于人工智能领域,1976 年Lowerre在其称为HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。
二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。
Branch and bound
分支定界(branch and bound)算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。
Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。
Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻(Edsger Wybe Dijkstra)发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。
动态规划
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。
欧几里得算法
在数学中,辗转相除法,又称欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至东汉出现的《九章算术》。
最大期望(EM)算法
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。
快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。
哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。
堆排序
Heapsort是指利用堆积树(堆)这种数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。
归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。
RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经专利失效,其被广泛地用于电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。
并查集Union-find
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
Viterbi algorithm
寻找最可能的隐藏状态序列(Finding most probable sequence of hidden states)。
参考资料:计算机算法
⑧ 算法的基本特征是
算法
3分钟了解今日头条算法原理(科普版)
02:43
什么是算法
04:28
概述
历史发展
算法分类
算法特征
算法要素
算法评定
目录
1摘要
2基本信息
3概述
4历史发展
5算法分类
6算法特征
7算法要素
数据的运算和操作
算法的控制结构
8算法评定
9描述方式
10史料记载
11基本方法
12参考资料
算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制;它是求解问题类的、机械的、统一的方法,常用于计算、数据处理(英语:Data processing)和自动推理。可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。
基本信息
中文名
算法
外文名
Algorithm
拼音
suanfa
出处
数学 计算机
定义
是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制
展开全部
概述
求解问题类的、机械的、统一的方法,它由有限多个步骤组成,对于问题类中的每个给定的具体问题,机械地执行这些步骤就可以得到问题的解答。算法的这种特性,使得计算不仅可以由人,而且可以由计算机来完成。用计算机解决问题的过程可以分成三个阶段:分析问题、设计算法和实现算法。[1]
历史发展
中国古代的筹算口决与珠算口决及其执行规则就是算法的雏形,这里,所解决的问题类是算术运算。古希腊数学家欧几里得在公元前3世纪就提出了一个算法,来寻求两个正整数的最大公约数,这就是有名的欧几里得算法,亦称辗转相除法。中国早已有“算术“、“算法”等词汇,但是它们的含义是指当时的全部数学知识和计算技能,与现代算法的含义不尽相同。英文algorithm(算法)一词也经历了一个演变过程,最初的拼法为algorism或algoritmi,原意为用阿拉伯数字进行计算的过程。这个词源于公元 9世纪波斯数字家阿尔·花拉子米的名字的最后一部分。[1]
在古代,计算通常是指数值计算。现代计算已经远远地突破了数值计算的范围,包括大量的非数值计算,例如检索、表格处理、判断、决策、形式逻辑演绎等。
在20世纪以前,人们普遍地认为,所有的问题类都是有算法的。20世纪初,数字家们发现有的问题类是不存在算法的,遂开始进行能行性研究。在这一研究中,现代算法的概念逐步明确起来。30年代,数字家们提出了递归函数、图灵机等计算模型,并提出了丘奇-图灵论题(见可计算性理论),这才有可能把算法概念形式化。按照丘奇-图灵论题,任意一个算法都可以用一个图灵机来实现,反之,任意一个图灵机都表示一个算法。
按照上述理解,算法是由有限多个步骤组成的,它有下述两个基本特征:每个步骤都明确地规定要执行何种操作;每个步骤都可以被人或机器在有限的时间内完成。人们对于算法还有另一种不同的理解,它要求算法除了上述两个基本特征外,还要具有第三个基本特征:虽然有些步骤可能被反复执行多次,但是在执行有限多次之后,就一定能够得到问题的解答。也就是说,一个处处停机(即对任意输入都停机)的图灵机才表示一个算法,而每个算法都可以被一个处处停机的图灵机来实现[1]
算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。[1]
算法可以宏泛的分为三类:
有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。[1]
算法特征
1、输入项:一个算法有零个或多个输入,以刻画运算对象的初始情况。例如,在欧几里得算法中,有两个输入,即m和n。[1]
2、确定性:算法的每一个步骤必须要确切地定义。即算法中所有有待执行的动作必须严格而不含混地进行规定,不能有歧义性。例如,欧几里得算法中,步骤1中明确规定“以m除以n,而不能有类似以m除n以或n除以m这类有两种可能做法的规定。
3、有穷性:一个算法在执行有穷步滞后必须结束。也就是说,一个算法,它所包含的计算步骤是有限的。例如,在欧几里得算法中,m和n均为正整数,在步骤1之后,r必小于n,若r不等于0,下一次进行步骤1时,n的值已经减小,而正整数的递降序列最后必然要终止。因此,无论给定m和n的原始值有多大,步骤1的执行都是有穷次。
4、输出:算法有一个或多个的输出,即与输入有某个特定关系的量,简单地说就是算法的最终结果。例如,在欧几里得算法中只有一个输出,即步骤2中的n。
5、能行性:算法中有待执行的运算和操作必须是相当基本的,换言之,他们都是能够精确地进行的,算法执行者甚至不需要掌握算法的含义即可根据该算法的每一步骤要求进行操作,并最终得出正确的结果。[1]
⑨ 算法的特性是怎么样的
算法的基本特性
1、有穷性
算法的有穷性是指算法必须能在执行有限个步骤之后终止;
2、确切性
算法的每一步骤必须有确切的定义;
3、输入项
一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件;
4、输出项
一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
算法分类
一、有限的,确定性算法这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。
二、有限的,非确定算法这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。
三、无限的算法是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。
⑩ 算法的特性是什么
一个算法应该具有以下五个重要的特征:
1,有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止。
2,确切性(Definiteness):算法的每一步骤必须有确切的定义。
3,输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。
4,输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。
5,可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性)。
相关信息:
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。
不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。