当前位置:首页 » 操作系统 » 遗传算法旅行商问题

遗传算法旅行商问题

发布时间: 2022-08-15 03:52:26

㈠ 遗传算法具体应用

1、函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

2、组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3、车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。

从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。


(1)遗传算法旅行商问题扩展阅读:

遗传算法的缺点

1、编码不规范及编码存在表示的不准确性。

2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

3、遗传算法通常的效率比其他传统的优化方法低。

4、遗传算法容易过早收敛。

5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

㈡ 遗传算法 旅行商问题 每次结果一样吗

不一定一样,一般情况下遗传算法求得的是近似最优解。如果问题规模较小,那么很有可能每次求得的结果都是一样的,即都是最优解

㈢ TSP遗传算法的求问!!!!

知道每个城市间距离就可以了,先把40乘40的距离矩阵列到excel里面,然后套入经典的遗传算法代码中运行就可以了。 软件中的Lingo有经典的tsp代码,下载破解版的lingo,然后运行就可以了。那个经典代码只能解决小规模的tsp,大规模的tsp需要用智能算法。100个城市只需要2分钟。40个只要几秒。 你可以到网上搜代码。

㈣ tSp Concorder算法原理

tsp问题遗传算法将多目标按照线性加权的方式转化为单目标,然后应用传统遗传算法求解
其中w_i表示第i个目标的权重,f_k表示归一化之后的第i个目标值。我们很容易知道,这类方法的关键是怎么设计权重。比如,Random Weight Genetic Algorithm (RWGA) 采用随机权重的方式,每次计算适应度都对所有个体随机地产生不同目标的权重,然后进行选择操作。Vector-Evaluated Genetic Algorithm (VEGA) 也是基于线性加权的多目标遗传算法。如果有K个目标,VEGA 会随机地将种群分为K个同等大小子种群,在不同的子种群按照不同的目标函数设定目标值,然后再进行选择操作。VEGA 实质上是基于线性加权的多目标遗传算法。VEGA 是第一个多目标遗传算法,开启了十几年的研究潮流。
1.TSP问题是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。本文使用遗传算法解决att30问题,即30个城市的旅行商问题。旅行商问题是一个经典的组合优化问题。一个经典的旅行商问题可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是一个NP完全问题。TSP问题可以分为对称和不对称。在对称TSP问题中,两座城市之间来回的距离是相等的,形成一个无向图,而不对称TSP则形成有向图。对称性TSP问题可以将解的数量减少了一半。所以本次实验的TSP问题使用att48数据,可在tsplib中下载数据包。演化算法是一类模拟自然界遗传进化规律的仿生学算法,它不是一个具体的算法,而是一个算法簇。遗传算法是演化算法的一个分支,由于遗传算法的整体搜索策略和优化计算是不依赖梯度信息,所以它的应用比较广泛。我们本次实验同样用到了遗传算法(用MATLAB编写)来解决TSP问题。

㈤ 急求 蚁群混合遗传算法在matlab上的实现以解决TSP旅行商的问题 小弟感激不尽

建立m文件
function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps; %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示

end

D(j,i)=D(i,j); %对称矩阵

end

end

Eta=1./D; %Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n); %Tau为信息素矩阵

Tabu=zeros(m,n); %存储并记录路径的生成

NC=1; %迭代计数器,记录迭代次数

R_best=zeros(NC_max,n); %各代最佳路线

L_best=inf.*ones(NC_max,1); %各代最佳路线的长度

L_ave=zeros(NC_max,1); %各代路线的平均长度

while NC<=NC_max %停止条件之一:达到最大迭代次数,停止

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[]; %随即存取

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))'; %此句不太理解?

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n %所在城市不计算

for i=1:m

visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问

J=zeros(1,(n-j+1)); %待访问的城市

P=J; %待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0 %开始时置0

J(Jc)=k;

Jc=Jc+1; %访问的城市个数自加1

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P); %cumsum,元素累加即求和

Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1); %开始距离为0,m*1的列向量

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1)); %原距离加上第j个城市到第j+1个城市的距离

end

L(i)=L(i)+D(R(1),R(n)); %一轮下来后走过的距离

end

L_best(NC)=min(L); %最佳距离取最小

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线

L_ave(NC)=mean(L); %此轮迭代后的平均距离

NC=NC+1 %迭代继续

%%第五步:更新信息素

Delta_Tau=zeros(n,n); %开始时信息素为n*n的0矩阵

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

%此次循环在路径(i,j)上的信息素增量

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

%此次循环在整个路径上的信息素增量

end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

%%第六步:禁忌表清零

Tabu=zeros(m,n); %%直到最大迭代次数

end

%%第七步:输出结果

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)

Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径

Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

subplot(1,2,1) %绘制第一个子图形

DrawRoute(C,Shortest_Route) %画路线图的子函数

subplot(1,2,2) %绘制第二个子图形

plot(L_best)

hold on %保持图形

plot(L_ave,'r')

title('平均距离和最短距离') %标题

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%-------------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')

hold on

end

title('旅行商问题优化结果 ')

建m文件
function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%-------------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));%画散点图

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')

hold on

end

title('TSP问题优化结果 ')

命令窗口运行
C=[1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975
];
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

㈥ 如何让遗传算法解旅行商问题快速收敛

想要快速收敛的话可以直接减小每一步的半径,但是更容易被局部峰值困住,可以通过选取几个差距较大的初始点多次运行来提高精确度。
最根本的解决方法还是提高计算适应度等步骤的效率。

㈦ 用遗传算法求解10城市旅行商问题,用matlab编程,要可以运行的程序,跪求,必有重谢

%蚂蚁算法
function [Shortest_Route,Shortest_Length]=anttsp(city,iter_max,m,Alpha,Beta,Rho,Q)
n=size(city,1);
d=zeros(n,n);
d=squareform(pdist(city));
Eta=1./d;
Tau=ones(n,n);
Tabu=zeros(m,n);
nC=1;
R_best=zeros(iter_max,n);
L_best=inf.*ones(iter_max,1);

while nC<=iter_max
route=[];
for i=1:ceil(m/n)
route=[route,randperm(n)];
end
Tabu(:,1)=(route(1,1:m))';
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));
J=zeros(1,(n-j+1));
P=J;
Jc=1;
for k=1:n
if isempty(find(visited==k, 1))
J(Jc)=k;
Jc=Jc+1;
end
end
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));

Pcum=cumsum(P);
Select=find(Pcum>=rand);
if isempty(Select)%是不是一定能保证Select不为空
Tabu(i,j)=round(1+(n-1)*rand);
else
next_visit=J(Select(1));
Tabu(i,j)=next_visit;
end
end
end
if nC>=2
Tabu(1,:)=R_best(nC-1,:);
end

L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+d(R(j),R(j+1));
end
L(i)=L(i)+d(R(1),R(n));
end
L_best(nC)=min(L);
pos=find(L==L_best(nC));
R_best(nC,:)=Tabu(pos(1),:);
nC=nC+1;

Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
Tabu=zeros(m,n);
end
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:);
Shortest_Length=L_best(Pos(1));
end

%%随机算法
%city是n行2列的矩阵,每一行表示一个城市的经纬度,一共n个城市
%time表示循环次数,越大,可能找到的路径最短,当然里面有随机性。
function [Shortest_Route,Shortest_Length]=TSP_SuiJiSuanFa(city,times)
n=size(city,1);
d=squareform(pdist(city));
Shortest_Length=inf;
for i=1:times
tempRoute=randperm(n);
tempLength=0;
for j=1:n-1
tempLength=tempLength+d(tempRoute(j),tempRoute(j+1));
end
tempLength=tempLength+d(tempRoute(n),1);
if tempLength<Shortest_Length
Shortest_Length=tempLength;
Shortest_Route=tempRoute;
end
end

end

㈧ 利用遗传算法求解TSP问题 从北京出发 四个城市

作为一种模拟生物自然遗传与进化过程的优化方法,遗传算法(GA)因其具有隐并行性、不需目标函数可微等特点,常被用于解决一些传统优化方法难以解决的问题。旅行商问题(TSP)是典型的NP难题组合优化问题之一,且被广泛应用于许多领域,所以研究遗传算法求解TSP具有重要的理论意义和应用价值。具有量子计算诸多特点的量子遗传算法(OGA)作为—新的概率进化算法,在解决实际问题时,其高度并行性能极大地提高计算效率,因而研究OGA求解TSP同样有重要的价值;而将具有遍历性和随机性的“混沌”概念引入量子遗传算法求解较复杂的组合优化问题又为求解优化问题开拓了一个新的思路。

㈨ 用遗传算法 解决旅行商问题,进化1000代,结果产生新解的代数一直都在刚开始几代,而且不是最佳解,怎么解

首先,遗传算法实际使用上并不能保证得到全局最优解。
出现这种情况说明遗传算法在开始前几代已经达到并陷入一个局部解。而算法的相关参数,例如交叉,变异概率等无法使算法跳出局部解。因此可以尝试改变遗传算法的参数。

热点内容
androidstudio结构 发布:2025-01-16 06:39:22 浏览:244
五区布鲁是什么服务器 发布:2025-01-16 06:35:13 浏览:864
androidhandler更新ui 发布:2025-01-16 06:21:28 浏览:170
java与mvc 发布:2025-01-16 06:20:40 浏览:332
lol最新刷金币脚本 发布:2025-01-16 05:56:22 浏览:563
电脑登陆加密 发布:2025-01-16 05:21:57 浏览:153
安卓怎么修复闪退 发布:2025-01-16 05:21:54 浏览:554
易盾加密 发布:2025-01-16 05:20:51 浏览:895
html上传图片的代码 发布:2025-01-16 05:16:55 浏览:601
搭建服务器租用电信的怎么样 发布:2025-01-16 05:12:32 浏览:50