取算法岗
⑴ 算法工程师如何选择适合自己的方向
目前投了的有TX(offer) 海康威视(offer sp) DJI(offer sp) 头条(挂) 阿里(ssp) MSRA(等消息,但hr透露不乐观)我就介绍下我自己的一些感受,可能不一定对,但也许会帮到大家。我觉得一定要做算法的话一定要明确下面几点:
1. 不要一直盯着互联网公司,很多硬件公司也需要算法,而且是刚需。
2. 千万不要认为视觉算法就不用刷题了,这种必跪(我头条就没刷,就是例子)
3. 不是说搞dl的就不用管频域那些传统方法了。就比如我不止一次被问到canny算法的具体实现方法(我还是做3D的)。 我感觉可能是真正落地的时候不可能让你直接dl end2end的。dl只会是一个pipeline的核心的小部件,剩下的还是需要人为先验更强的传统方法的。
4. 最好能对一些论文里或者实验中反直觉的方法有一些深刻的理解,最好能直接到硬件层面。举个例子 mobilenet v2明明flops比 resnet18低那么多,为啥电脑跑起来不会更快?又为啥放移动端就会快很多?
5. 我觉得比起论文,面试官更喜欢在知名排行榜上有个好名次的方法。
6. 实习真的很重要,尤其是大厂实习(比如阿里面试官就说,他能捞我简历看上的根本不是啥paper啥排行榜。。人家是觉得MSRA培养的方法论很好。。)
7. 大家现在很多都过了那种刷论文,刷排行榜的阶段了,都讲落地。这意味着你要是不懂轻量级网络,剪枝蒸馏算法的sota,你会很吃亏。同时,如果你有嵌入式经验和cuda经验,你会很加分。
8. 拉宽知识面。。没事就去读读别的方向的paper总会有好处。
最后无论从事开发岗,还是在算法领域,知识的更替速度快,不持续学习跟进前沿技术,就会被淘汰。算法工程师本质上也是工程师,不要因为你是算法而有所谓的优越感,数学模型技能只是一方面,没有扎实的工程能力,也走不远。尤其是AI近几年的火爆,算法的门槛也变低,造成越来越多的人涌入算法岗。等到AI退潮之后,你扎实的基础工程能力和业务能力才是生存下来的必要条件吧。
⑵ 计算机开发岗和算法岗都有些什么区别
其实只有在大厂这两个岗位才会被分的很清楚,小公司的话一般都是混着用,毕竟算法工程师都很贵,得保证利益最大化才行。
算法岗
这种岗位负责新算法的研发工作和论文的解读、编写,一般存在于一些大厂的实验室,比如国内的阿里、网络、腾讯、华为,国外的openAI、脸书、deepmind等。而且学历和专业要求极高,基本都是科班的名校硕士或者博士,这也是网传的算法门槛高的真正岗位,高学历保证了技术水准的同时也保证了技术员的学习接收能力,保证了国外如果有新的技术论文可以第一时间解读和实践。
算法工程师岗
目前我就是这个岗位,主要是负责将已经成熟的技术结合到商业项目中偏向业务一些,这个这个岗位就没有算法岗那么夸张,基本上只要是好一点的本科计算机专业就够满足面试要求了,目前商汤、旷视、寒武纪这些都偏向这个方向。
其实还有第三档的公司主要做的是产品,基本上就是调用模型然后应用到一些软件中去,来优化产品功能,基本上懂一些算法的开发就能做到这项工作。
⑶ 算法工程师的就业前景如何
人工智能工作最受欢迎。算法工程师平均招聘工资建议达到25978元。由于人才匮乏,企业竞争激烈,平均加薪超过7%。该市90%以上的人工智能高薪工作都在天河区.近日,由广州天河人才港和BOSS直接就业研究院联合发布的《广州市天河区2018年1-4月人才趋势报告》,展示了该地区的主流发展趋势:IAB已经成为天河区,和天河区创新型企业和大型企业布局或发展的核心主方向,企业以高薪吸引更多的行业优秀人才。“天河区企业渴望以高薪攫取IAB人才,这意味着企业要在这些行业中发挥实力。
⑷ 你觉得算法工程师的就业前景如何
随着大数据和人工智能领域的不断深入发展,自然语言处理、机器学习等方向成为求职的大热门,算法工程师也自然而然成为目前最炙手可热的岗位。虽然算法工程师一直被频频提及,但是许多人对这个岗位的了解还知之甚少。那么算法工程师究竟是做什么的?发展前景怎么样呢?
由于算法工程师对于知识结构的要求比较丰富,同时算法工程师岗位主要以研发为主,需要从业者具备一定的创新能力,所以要想从事算法工程师岗位往往需要读一下研究生,目前不少大型科技企业对于算法工程师的相关岗位也有一定的学历要求。
⑸ 想成为一名人工智能算法工程师,大学读什么专业
首先,从研究生的就业情况来看,近两年算法工程师的岗位需求量较前些年有了明显的下滑,目前大数据岗位的研发型人才需求量要相对大一些。所以,如果当前要想选择从事算法岗位,在选择空间上往往并不会很大,这一点应该做好心理准备。
在IT行业内多个领域都需要算法工程师,目前算法岗位多集中在大数据和人工智能相关领域,由于目前大数据正处在落地应用的初期,而人工智能行业也普遍存在落地难的问题,所以算法岗位的需求量受到了较大的影响。
从目前行业的发展趋势来看,算法岗位短期内出现爆发式人才需求的可能性并不大,一方面科技企业对于算法人才的储备相对比较充足(前些年招聘较多),另一方面算法研究也需要一个沉淀的过程。
从人才培养的角度来看,算法工程师往往都需要具备研究生学历,计算机专业、数学专业和统计学专业比较容易从事算法岗位(要看具体的研究方向),也有一部分经济学专业、物理专业、自动化专业的毕业生会从事算法岗位。
计算机相关专业从事算法岗位是比较常见的,其中以大数据方向、人工智能相关方向的毕业生从事算法岗位居多,实际上也有一部分计算机专业的本科生会选择算法岗位,这与自身的知识结构有较为密切的关系。
早期有不少数学相关专业的毕业生会从事算法岗位,但是目前数学专业的毕业生从事算法岗位的要求有了较为明显的提升,重点在于算法实现能力的要求(编程能力),这也导致一部分数学专业毕业生无法直接从事算法岗位。
目前,人工智能的研究和实践如火如荼,但是应该摆正心态,做好打持久战的准备,短时期内很难将该领域的技术研究透彻,并完全推广应用。一句话,此路任重而道远,但却是人类社会科技发展的必经阶段。
⑹ 算法岗面试都会考代码吗
会。
算法岗面试的第一关,手撕代码环节,主要考察你对数据结构和一般算法的掌握,以及作为码农最基本的编程能力。二至三道编程题写完之后,就进入到了面试的第二关,算法基础知识考察环节,这里的算法指的是机器学习、深度学习以及细分方向上,比如CV、NLP相关的算法知识。
⑺ 都快2021年了,算法岗位应该怎样准备面试
说到算法岗位,现在网上的第一反应可能就是内卷,算法岗位也号称是内卷最严重的岗位。针对这个问题,其实之前我也有写过相关的文章。这个岗位竞争激烈不假,但我个人觉得称作内卷有些过了。就我个人的感觉,这几年的一个大趋势是从迷茫走向清晰。
早在2015年我在阿里妈妈实习的时候,那个时候我觉得其实对于算法工程师这个岗位的招聘要求甚至包括工作内容其实业内是没有一个统一的标准的。可以认为包括各大公司其实对这个岗位具体的工作内容以及需要的候选人的能力要求都不太一致,不同的面试官有不同的风格,也有不同的标准。
我举几个例子,第一个例子是我当初实习面试的时候,因为是本科生,的确对机器学习这个领域了解非常非常少,可以说是几乎没有。但是我依然通过了,通过的原因也很简单,因为有acm的获奖背景,面试的过程当中主要也都是一些算法题,都还算是答得不错。但是在交叉面试的时候,一位另一个部门的总监就问我有没有这块的经验?我很明确地说了,没有,但是我愿意学。
接着他告诉我,算法工程师的工作内容主要和机器学习相关,因此机器学习是基本的。当时我就觉得我凉了,然而很意外地是还是通过了面试。
核心能力
由于我已经很久没有接触校招了,所以也很难说校招面试应该怎么样准备,只能说说如果是我来招聘,我会喜欢什么样的学生。也可以理解成我理解的一个合格优秀的算法工程师应该有的能力。
模型理解
算法工程师和模型打交道,那么理解模型是必须的。其实不用说每一个模型都精通,这没有必要,面试的时候问的模型也不一定用得到。但更多地是看重这个人在学习的时候的习惯,他是浅尝辄止呢,还是会刨根究底,究竟能够学到怎样的地步。
在实际的工作当中我们可能会面临各种各样的情况,比如说新加了特征但是没有效果,比如升级了模型效果反而变差了等等,这些情况都是有可能发生的。当我们遇到这些情况之后,需要我们根据已知的信息来推理和猜测导致的原因从而针对性的采取相应的手段。因此这就需要我们对当前的模型有比较深入地了解,否则推导原因做出改进也就无从谈起。
所以面试的时候问起哪个模型都不重要,重要的是你能不能体现出你有过深入的研究和理解。
数据分析
算法工程师一直和数据打交道,那么分析数据、清洗数据、做数据的能力也必不可少。说起来简单的数据分析,这当中其实牵扯很多,简单来说至少有两个关键点。
第一个关键点是处理数据的能力,比如SQL、hive、spark、MapRece这些常用的数据处理的工具会不会,会多少?是一个都不会呢,还是至少会一点。由于各个公司的技术栈不同,一般不会抱着候选人必须刚好会和我们一样的期待去招人,但是候选人如果一无所知肯定也是不行的。由于学生时代其实很少接触这种实践的内容,很多人对这些都一无所知,如果你会一两个,其实就是加分项。
第二个关键点是对数据的理解力,举个简单的例子,比如说现在的样本训练了模型之后效果不好,我们要分析它的原因,你该怎么下手?这个问题日常当中经常遇到,也非常考验算法工程师对数据的分析能力以及他的经验。数据是水,模型是船,我们要把船驶向远方,只懂船只构造是不行的,还需要对水文、天象也有了解。这样才能从数据当中捕捉到trick,对一些现象有更深入的看法和理解。
工程能力
虽然是算法工程师,但是并不代表工程能力不重要,相反工程能力也很重要。当然这往往不会成为招聘的硬性指标, 比如考察你之前做过什么工程项目之类的。但是会在你的代码测试环节有所体现,你的代码风格,你的编码能力都是你面试的考察点之一。
并不只是在面试当中如此,在实际工作当中,工程能力也很关键。往小了说可以开发一些工具、脚本方便自己或者是团队当中其他人的日常工作,往大了说,你也可以成为团队当中的开发担当,负责其团队当中最工程的工作。比如说复现一篇paper,或者是从头撸一个模型。这其实也是一种差异化竞争的手段,你合理地负担起别人负担不了的工作,那么自然就会成为你的业绩。
时代在变化,行业在发展,如今的校招会问些什么早已经和当年不同了。但不管怎么说,这个岗位以及面试官对于人才的核心诉求几乎是没有变过的,我们从核心出发去构建简历、准备面试,相信一定可以有所收获。
⑻ 为什么一线互联网公司的校招高薪都是算法类
高端工程类岗位所需要的能力,高校很难培养出来。中低端工程类岗位,可能确实不太值钱。
。算法类因为一些历史遗留问题,大公司之前懂得人不多,而学校确实有些老师是行家里手,学生也可以在某一个小领域,做到精通。
这推高了前两年算法领域的校招价。然而,随着公司相关人才越来越多,算法类的稀缺性也在下降。另外,现在很多技术比较好的组也比较认清了,高端算法类毕业生已经不能靠论文数量,甚至已经不能靠发的会议质量了。
⑼ 本科生真的很不适合算法岗位吗
先说结论:有难度,算法工作两年,身边都是硕士和博士,真心想做算法,可以继续读个硕士。算法内卷严重,很多人也都是在劝退。不过这也是我国快速发展带来的问题,试问哪个行业不是内卷严重?大家一起卷呗。学习经验和路线,我整理过,原文如下:
一、前言一直以来,被问到最多的问题就是“算法的学习路线”。
今天,它来了。
我会带着大家看看,我们需要学些啥,利用这个假期,我甚至还收集整理了配套视频和资料,暖男石锤啊,这期文章有用的话,别忘三连哦!
二、学习路线主要分为 4 个部分:数学基础、编程能力、算法基础、实战。