夹具数据库
国产机器人离线编程软件目前都还很不成熟,尚处于起步模仿阶段。业界公认做的还看得过去的,一个是北京的RobotArt,另一个是南京的中科川斯特。没错,一南一北。
首先说一下中科川斯特离线编程仿真软件,该软件集成了功能强大的先进制造工艺离线编程技术,包括点焊,弧焊,三维激光切割,激光融覆,3D打印,喷涂,去毛刺,打磨抛光,涂胶等十几种工艺应用。这款软件的特点就是可以多机器人协同工作、支持各种6关节机器人、拓扑技术、夹具设计处理、扫描数据处理。
其次说一下RobotArt离线编程仿真软件,该软件在工业上同样也得到广泛应用,但在打磨、焊接领域做得比较好,这款软件的特点就是可以提取三维模型的点、线、面自动生成轨迹;支持多种格式的三维CAD模型;支持多种品牌工业机器人离线编程操作;支持多种工艺包,如切割、焊接、喷涂、去毛刺、数控加工。
至于说到价格,国产离线编程软件的价格应该相比那些国外的软件来说价格应该大家都可以接受吧。
⑵ 什么是MES系统
MES系统是一套面向制造企业车间执行层的生产信息化管理系统。
MES可以为企业提供包括制造数据管理、计划排程管理、生产调度管理、库存管理、质量管理、人力资源管理、工作中心/设备管理、工具工装管理、采购管理、成本管理、项目看板管理、生产过程控制、底层数据集成分析、上层数据集成分解等管理模块,为企业打造一个扎实、可靠、全面、可行的制造协同管理平台。
特点
1、采用强大数据采集引擎、整合数据采集渠道(RFID、条码设备、PLC、Sensor、IPC、PC等)覆盖整个工厂制造现场,保证海量现场数据的实时、准确、全面的采集;
2、打造工厂生产管理系统数据采集基础平台,具备良好的扩展性;
3、采用先进的RFID、条码与移动计算技术,打造从原材料供应、生产、销售物流闭环的条码系统;
4、全面完整的产品追踪追溯功能。
⑶ 什么是定位误差
1、定位误差是指一批工件的工序基准在加工工序尺寸方向上的最大变动范围,其大小是判断夹具定位方案是否合理的重要依据 。 2、定位误差是指在调整法加工中工件定位时工序基准在工序尺寸方向上的最大可能位移.定位误差的计算方法按原理可分为二种一种是根据定位误差的定义进行计算。 3、在PTP方式中,定位误差是指控制对象从某一位置A点出发,经过充分的时间到达目标位置B点与理论位置之差,称作E.经反复多次运行E值的频数大致呈正态分布.也有分别以E的均值e、标准方差σ来表示定位误差或用e±3σ进行标定的 。 4、定位误差是指一批工件的工序基准在加工要求方向上位置的最大变动量,这种数据库程序往往需要一个庞大的数据库管理系统支持对用户的软、硬件要求较高 。 5、导致工件被加工尺寸的定位基准(或工序基准)在安装过程中,相对理想位置产生了一定的位置变动,从而引起被加工尺寸的加工误差,工件上被加工尺寸的工序基准相对于定位元件工作表面在加工尺寸方向上的最大变化范围称为定位误差 。 6、定位误差与尺寸链的联系在定位误差理论中,定位误差是指采用调整法加工一批工件,由于定位所造成的工件加工面相对于工序基准在加工尺寸要求方向上的最大位置变动量 。 7、定位误差就是指工件在夹具中定位时由于工件的位置偏离了理想位置而引起的加工误差.工件在夹具中的定位实际上是以定位元件、工件的定位基准面来代替夹具原理中的“定位原理”所决定的点、线、面 。 8、企业信息化“是指利用信息技术获取、处理、传输、应用知识和信息资源,使企业的竞争力更强和收益更多的一个动态过程”∞.所谓定位误差是指工件在定位时,一批工件的工序基准在夹具中位置不一致所引起的加工误差,以△D表示 。 9、定位误差的计算公式所谓定位误差,是指一批工件在夹具中定位时,由于定位不准而引起的工序基准相对于加工表面在工序尺寸方向上的最大位置变动量。 10、在采用调整法加工一批工件的条件下由于工件定位时的位置不准确在加工过程中所引起的工序尺寸或位置的误差称为定位误差,定位误差一般由基准位置误差和基准不重合误差两部分组成 。 11、如多传感器的相对位置和方位不能精确测定(称为定位误差)。
⑷ 有没有技术大牛了解java开发,测试和CI的关
大家可能对如下情景比较熟悉:
如果开发过SSH的web项目,启动服务器可能会比较慢,有的项目甚至需要1分多钟,甚至更多,这个启动时间的等待一般就浪费了;
在开发项目时,有些功能比较复杂,当时觉得思路特清晰,但是过了一段时间后,自己也忘了,完善功能时频繁出现bug,降低开发速度;
在维护项目时,不知道自己修改的对还是不对,是否存在隐患;维护速度降下来了;
如果开发一个很多人都使用的接口,典型的如用户系统,要保证比如升级时向下兼容;
在团队间协作时,有时候只定义好接口,对方还没有给实现,如何进行同步开发?
缩短发现问题到解决问题的速度;
给程序一个修改后能验证是否正确的保证;(回归测试)
如果是开源软件,我们可以通过单元测试了解其是怎么使用的;比如我之前通过cglib的单元测试学习过cglib的使用;
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>native2ascii-maven-plugin</artifactId>
<version>1.0-alpha-1</version>
<executions>
<execution>
<phase>generate-resources</phase>
<goals>
<goal>native2ascii</goal>
</goals>
<configuration>
<encoding>UTF-8</encoding>
<src>src/main/messages</src>
<dest>target/${project.artifactId}/WEB-INF/classes</dest>
<includes>messages.properties</includes>
</configuration>
</execution>
</executions>
<!--native2ascii使用的tools.jar-->
<dependencies>
<dependency>
<groupId>com.sun</groupId>
<artifactId>tools</artifactId>
<version>1.7.0</version>
<scope>system</scope>
<systemPath>${java.home}/../lib/tools.jar</systemPath>
</dependency>
</dependencies>
</plugin>
如上问题,估计只要是个开发人员,都可能遇到过;如果此时有了单元/集成测试,那我们能很好的解决这些问题。(注:加下来如果没有特殊情况,不刻意强调 单元测试/集成测试,即提到测试是指的是单元/集成测试)
我从以下几个方面介绍测试:
1、为什么需要测试?
2、如何进行测试?
3、测试有哪些好处?
4、一切都需要测试吗?
1、为什么需要测试?
测试的目的是什么?我的理解是:
所以如果你遇到如上问题,就需要写测试。写测试可能是为了自己(1、2);也可能是为了帮助别人(3)。
2、如何进行测试?
很多朋友不知道如何进行测试,其实测试很简单,别把它想复杂了,按照自己的想法测试每个功能点是否正确即可。
2.1、测试流程
单元测试流程
如果使用mysql,端口只能是3306。
如果想开端口测试,这是不允许的。
如下是我项目中的一个配置.travis.yml,放到项目的根下即可:
-----------------------------------
language: java 语言
env: 环境
- DB=mysql 使用mysql
jdk:
- openjdk jdk使用openjdk
mysql:
database: es 数据库名为es
username: root 用户名为root
password : 密码为空
encoding: utf8 编码为utf8
install: 安装时执行的脚本
- mvn install -Dmaven.test.skip=true mvn安装并跳过测试
before_script: script之前执行的测试
- cd web
- mvn db:create 创建数据库的mvn命令(此处使用了maven-db-plugin 插件)
- mvn db:schema 创建脚本的mvn命令
- mvn db:data 安装数据的mvn命令
- cd ..
script: 测试时执行的脚步
- cd common
- mvn test 测试common子模块
- cd ..
- cd web
- mvn test -Pit 测试web子模块,并指定使用it profile测试(即集成测试的配置,具体参考pom.xml中的profile/it)
notifications: 触发
email: 测试完成后测试报告发到哪
-----------------------------------
持续集成不能修复代码的错误,而是和单元测试一样,缩短发现问题带解决问题的时间,这样可以提高开发效率,降低项目风险,提高项目的稳定性。而且尤其是团队协作时,可以发现其他人的代码是否对自己的代码产生影响。
到此我们利用单元测试+CI可以加速开发人员的开发速度。利用好单元测试和CI,不要纯粹为了单元测试和CI而去做这些事情。
本文没有介绍TDD,TDD并不会那么美好,我认为我们可以借鉴TDD的一些思想,但决不能迷信TDD,有时候,尤其如开发企业应用,先写功能再写测试可能效率更高,而且大部分时候是不需要TDD的。而且我也没能在实际项目中获取太多TDD的好处,但是我获得了测试的好处。
本文也没有介绍测试覆盖率,我认为不要一味的追求覆盖率,有时候有的覆盖率没有任何意义。所以不要让为了覆盖率而覆盖率拖慢了项目开发进度。
正如stackoverflow上的一篇帖子《How deep are your unit tests?》上Kent Beck的回答:
写道
老板为我的代码付报酬,而不是测试,所以,我对此的价值观是——测试越少越好,少到你对你的代码质量达到了某种自信。
可以前往coolshell的“单元测试要做多细?”去得到一些经验。
⑸ 2mm工程思想具体该如何运用,谁能和我详聊啊
现代汽车制造中,普遍采用车身制造综合误差指数CII(Continuous Improvement Indicator)来控制车身制造质量,即“2mm工程”。这一误差指数不是车身制造质量测量数据的实际偏差,而是对车身制造尺寸稳定性指标的综合评价,不但可以应用于整车制造,而且可以应用于零部件制造。“2mm工程”应用于汽车工业不仅可以实现经济的汽车制造,同时也是一个国家制造技术水平的综合反映。
“2mm工程”的本质是建立以数据为基础的制造质量控制体系,通过对制造数据建模分析来识别车身制造尺寸偏差源,保证车身制造工艺的稳定性,最终提高整车的配合精度。其核心是采用先进的车身测量技术,建立从冲压工艺、加工装备到装配过程协调、一致、高效的测量系统,通过数据分析和积累,将人为的经验管理上升到科学管理水平。
车身精度的影响因素及控制措施
汽车制造企业在实施“2mm工程”过程中,汽车车身的匹配一直是主要影响因素,如果车身匹配精度超过规定值,就会影响汽车制造质量、生产节拍和产品成本。汽车车身匹配误差主要涉及4方面原因,必须采取相应措施进行有效控制。
1、车身设计质量
一个产品在从无到有的过程中,最初的设计质量优劣将对产品的固有质量产生决定性的影响,因此,必须采取以下几方面措施:
□ 确保车身设计基准与工艺基准的一致性。
设计基准应与装配基准和加工基准一致,这样有利于实现车身匹配焊接质量的稳定性。
□ 多采用整体冲压件。
对不容易保证结构尺寸或尺寸要求较高的结构零件要尽量采用整体冲压件,以减少车身匹配时的装配误差和焊接变形。
□ 合理考虑车身匹配焊接方法。
焊接的接头设计尽量采用电阻焊方法,以减少焊接变形。
□ 定位焊点具有合理的位置和数量。
定位焊点的位置和数量影响到本工序的车身刚度能否保证后续工序的车身品质。特别是在生产线改造时,要注意焊点迁移对车身精度的影响。
2、焊接夹具的影响
□ 焊接夹具的定位基准与产品设计基准和装配基准应重合,这样可以消除由于基准不同而产生的尺寸误差,简化装配协调关系,提高焊接夹具的装配精度。
□ 夹具制造精度应达到设计要求。在车身试生产前要对夹具进行调试,检验夹具能否保证焊接精度,夹具与零件的协调性以及对零件匹配质量进行考核。
□ 与车身匹配相关的零件尺寸应保证,特别是装配孔、装配面和工艺孔的尺寸必须严格控制,因为车身焊接时的变形往往造成这些部位的尺寸偏差。
□ 在夹具制造精度得到保证的前提下,还需要考虑对重要定位销、面的热处理和生产维护。
3、控制焊接变形量
□ 采用电阻焊可以减小车身焊接变形。由于电阻焊为内部热源,加热集中、热影响区小、容易获得优质接头。
□ 采用先进焊接设备减小车身焊接变形。机器人焊接不仅能使车身焊接时焊点均匀、点焊顺序稳定,而且能提高焊接速度。
□ 严格按照焊接工艺控制车身焊接变形。在产品生产的一系列过程中都必须制定明确的焊接工艺文件,并严格按照焊接工艺文件的要求进行控制。
□ 随着车身向“轻量化”方向发展,高强度钢板得到广泛应用,这种材料对制造精度非常敏感,零件精度的偏差,不仅影响白车身的精度,而且对车身的强度也会造成很大地影响。
4、零部件精度及操作过程的影响
□ 提高零部件的制造品质。由于整车所包含的零部件中,有很多是由不同的供应商提供的,因而存在技术水平上的差异,从而会在焊装过程中产生累计误差,影响车身精度及整车品质。另外,冲压车间生产的零件,因工艺或模具等原因,会产生较大的回弹量,给车身精度带来不良影响。因此,控制零部件的精度是提高车身精度的首要课题。
□ 改善各配套厂的零部件包装及物流方式。将物流过程中的零部件状态变化纳入质量管理范畴,防止运输过程中零部件之间的碰撞变形。
□ 操作过程的影响既包括零部件在生产过程中在夹具间的传递,也包括人工操作,如果操作不当,会使定位孔、面产生变形,从而影响后工序的定位和零件之间的配合精度。
提高车身精度的思路和方法
1、强化设备管理
□ 加强对焊装夹具、检具、模具、三坐标测量机及机器人等设备的管理,在机器人示教过程中,焊接姿态不好会直接导致零件在焊点附近变形。
□ 焊装车间每个车型都有近60~80套夹具,因而,高精度且稳定的夹具是实现高精度车身的基本保证。在夹具管理过程中,应建立夹具管理数据库,以便于对每套夹具的状态有一个良好的把握,另外要特别注意做好夹具各定位销的相关性管理,有些夹具仅分析单个定位销的位置精度及磨损量是不够的,必须从相关性角度考虑,否则将无法保证高精度的白车身。另外,应加强对夹具的维护保养,及时清理在焊接过程中,飞溅落在定位销和定位面上的金属残余。
□ “夹具检具化”的合理运用。“夹具检具”化的目的是通过高精度的夹具来替代部分检具的功能,从而真正实现在生产过程中对零部件的品质起到监控的作用。“夹具检具化”的前提是高精度的夹具,它可以让生产员工及时了解流入本工序的零件品质情况,是一种既节约成本、又充分让全员参与品质管理的新思路。
2、抓好过程控制
工序质量控制是质量管理的重要内容,工序控制的主要任务是把质量特性值控制在规定的波动范围内,使工序处于受控状态。统计质量控制(SPC)是工序质量控制的重要方法,SPC是对生产过程中质量特性值总体进行随机抽样,对总体做出统计推断,它通过运用控制图对生产过程进行分析评价,根据反馈信息及时发现系统问题,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
SPC以图形或数值为基础建立一个以过程为核心的质量管理体系,其中数据的质量是非常重要的,数据的准确度、可信度直接影响到我们是否在适当的时候采取合适的行动。主要有两方面的影响因素:
□ 测量系统的影响;
□ 记录数据、计算等人为的影响。
工序质量控制的关键在于找到控制点,控制点的质量信息是生产现场质量信息的重要组成部分,由车间质量工程师集中管理。在各控制点的控制图和数据记录中,包含着许多宝贵的质量信息,车间质量工程师及时收集、汇总,会同工艺人员进行统计分析,作为指导这些工序的重要依据。
3、系统、科学地分析车身数据
通过三坐标测量得到的车身数据必须系统、科学地进行分析,采用左右差管理、相关性管理的方式找出这些数据间存在的规律。例如:假设偏差按±1.0mm管理,如图4所示,当左侧围在X方向上偏差-0.8mm,右侧围在X方向上偏差0.8mm时,从理论上说左右侧围的偏差均在合格范围内,但从侧围左右差来看有1.6mm的变化,这必然会导致发动机罩和前翼子板的前端不能密切结合。
4、TQM强化实施
TQM(Total Quality Management)是一种顾客导向的管理方法,它强调有效运用人力资源及计量方法,通过持续改进,以提升产品与服务品质。TQM是一种思想观念,一套方法、手段和技巧,通过全体员工的参与、改进流程、产品、服务和公司文化,达到在百分之百时间内生产百分之百的合格产品,以满足顾客需求。全面质量管理的基本原理与其他概念的基本差别在于,它强调管理必须始于识别顾客对产品的质量要求,终于顾客对产品质量感到满意。全面质量管理就是为了实现这一目标而指导人、机器、信息的协调活动。全面质量管理工作的一个重要特征是,从根源处控制质量。例如,通过由操作者自己衡量成绩来促进和树立他对产品质量的责任感。
同样,车身精度的提高仅仅靠品质管理人员的努力是远远不够的,这是一个系统工程,它必须依靠全体员工的一致努力:从设计阶段到生产阶段,从零部件供应商到整车厂四大车间,从零件单品品质到车身零件配合精度,从各工序的过程控制到总成件的综合分析,需要全员参与才能达到最终的目标。
结束语
“2mm工程”并不是一个单一的产品质量评价体系,而是通过对企业“2mm工程”的有效性评价来推进企业适应全球市场竞争。由于车身匹配与整车安全性和可靠性关系密切,而且车身又是汽车零部件的匹配载体,其制造质量的优劣对整车质量的影响极大。
⑹ 世界四大机床展会 你知道吗
1.中国国际机床展览会(CIMT)
由中国机床工具工业协会主办。从1989年起每两年(逢单年)一次,迄今为止成功举办了八届。CIMT的展会规模一直居中国各类国际专业工业展览会之首,已成为国际先进制造技术交流与贸易的重要场所,成为我国机械制造技术进步和工业发展的推动力量。新一届中国国际机床展览会(CIMT2012),将创历届展会规模新高。CIMT展会是当今国际机床名展中商贸活动最为活跃的展会,是拥有丰富内涵的高品位展会。
2.美国芝加哥国际制造技术展览会(IMTS)
于第二次世界大战前(约1942年)举办了第一届美国芝加哥国际制造技术展,至2002年已举办了29届(逢双年举办)。2002年为该展历史上规模最大、水平最高的国际机床展。展览面积13万平方米,30多个国家和地区的1400家企业参展,共展出数控机床1308台,五轴以上联动的机床47台,高速、复合、环保和智能化技术已在产品上得以体现,趋于实用。
3.欧洲国际机床展览会(EMO)
1950年欧洲12个国家的机床协会联合组建了欧洲机床工业合作委员会(CECIMO)。从1951年起,举办欧洲国际机床展(EMO)。自1957年展会向世界开放。EMO每隔两年(逢单年)在法国巴黎、德国汉诺威、意大利米兰三个城市轮流举办。该委员会作出严格规定,在举办欧洲国际机床展年内,任何欧洲国家不允许再举办类似的国际性机床展览会,各国必须严格遵守这一规定。2001年在德国汉诺威举行的第14届EMO,展览面积19万平方米,来自36个国家和地区的2263家企业,展出了数千台各类机床和相关设备及配套件。
4.日本国际机床展览会(JIMTOF)
1962年举办了第一届JIMTOF,以后每两年(逢双年)一次,轮流在东京、大阪举办。2002年10月在东京国际展览中心举办的第21届JIMTOF,由14个国家和地区的712家企业参展,“新技术、新产品的集结”是这届展览会的口号。较往届JIMTOF相比,不论在主机还是配套件,包括刀具和工具都更强调调高速度、高精度、高刚性。由工序集中发展起来的复合加工技术,在功能扩展、功能复合上又有新的突破。
⑺ 百超6.8编程软件cnc数据库路径怎样改
数控技术论文本科毕业论文(设计)22009-10-2222:39第一章:数控技术和PRO/E软件技术1.1数控技术1.1.1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业(it、汽车、轻工、医疗等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面。(一)、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(cirp)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从emo2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床。美国cincinnati公司的hypermach机床进给速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60000r/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国dmg公司的双主轴车床的主轴速度及加速度分别达12*!000r/mm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~1.5μm,并且超精密加工精度已开始进入纳米级(0.01μm)。在可靠性方面,国外数控装置的mtbf值已达6000h以上,伺服系统的mtbf值达到30000h以上,表现出非常高的可靠性。为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。(二)、5轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在emo2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国dmg公司展出dmuvoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由cnc系统控制或cad/cam直接或间接控制。(三)、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的ngc(thenextgenerationwork-station/machinecontrol)、欧共体的osaca()、日本的osec(),中国的onc(opennumericalcontrolsystem)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。网络化数控装备是近两年国际着名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在emo2001展中,日本山崎马扎克(mazak)公司展出的“cyberproctioncenter”(智能生产控制中心,简称cpc);日本大隈(okuma)机床公司展出“itplaza”(信息技术广场,简称it广场);德国西门子(siemens)公司展出的openmanufacturingenvironment(开放制造环境,简称ome)等,反映了数控机床加工向网络化方向发展的趋势。1.2FANUC数控系统数控加工中心机床基础知识在这一节中我们了解FANUC数控加工中心作的一些基础知识。由于内容的要求,我们只作简要的讲解。1.2.1坐标系/对刀点/换刀点坐标系:主要坐标系分为机床坐标系和工件坐标系,前者由厂家设定,工件坐标系:又叫编程坐标系,用来确定工件各要素的位置。刀点:主要分为对刀点和换刀点,前者刀具相对工件运动的起点(又叫程序起点或起刀点)。后者是换刀的位置点,在加工中心有换刀的程序,在加工零件的时候,我们只要调刀就可以执行。1.2.2常用基本指令在校徽的加工过程中,我们要用到这些基本指令:进给功能字F用于指定切削的进给速度。主轴转速功能字S用于指定主轴转速。刀具功能字T用于指定加工时所用刀具的编号。辅助功能字M用于指定数控机床辅助装置的开关动作。准备功能G指令,用于刀具的运动路线。如下表1.1是G代码表。表1.1G功能字含义表(FANUC—OM系统)G00快速移动点定位G70粗加工循环G01直线插补G71外圆粗切循环G02顺时针圆弧插补G72端面粗切循环G03逆时针圆弧插补G73封闭切削循环G04暂停G74深孔钻循环G17XY平面选择G75外径切槽循环G18ZX平面选择G76复合螺纹切削循环G19YZ平面选择G80撤消固定循环G32螺纹切削G81定点钻孔循环G40刀具补偿注销G90绝对值编程G41刀具半径补偿—左G91增量值编程G42刀具半径补偿—右G92螺纹切削循环G43刀具长度补偿—正G94每分钟进给量G44刀具长度补偿—负G95每转进给量G49刀具长度补偿注销G96恒线速控制G50主轴最高转速限制G97恒线速取消G54~G59加工坐标系设定G98返回起始平面GG65用户宏指令G99返回R平面1.2.3编程方式在编程的过程中,有两种编程方式:一种是手工编程;另一种是数控自动编程,自动数控编程又分为:图形数控自动变成、语言数控自动编程和语音数控自动编程三种。手工编程的特点是耗费时间长,容易出现错误,无法胜任复杂形状零件的编程。国外资料统计,手工编程时间与机床实际加工时间平均比是30/1。20%─30%机床不能开动的原因是由于手工编程的时间较长引起的。在这节我们以FANUC系统的编程知识来讲解,在这个设计中,我们是以图形数控自动编程来的。手工编程过程总结:程序的输入:打开程序保护锁,按下PROG键,方式开关选择到编辑状态,DIR检查内存占用情况,输入OXXXX,按INSERT键(报警的话,说明该文件名存),按RESET复位,重新输入文件名。当我们建立了文件名后,文件名要单独占一行,每行的结束要用“;”(按EOB,在按INSERT插入),如果顺序号没有出来,我们可以把顺序号的功能打开(按OFFSETSETTING键,选择SETTING,移动光标键,下面有个顺序号,参数是“0”,说明没有顺序号,所以我们将它改为“1”,打如INPUT,注意只有在MDI方式下才能改参数,否则要报警),进行程序的输入。程序比较长的时候,我们可以将程序号的间隔调小,操作如下:MDI方式下按OFFSETSETTING键,按PAGE,找到“10”所在的参数号,将“10”改为“5”,按INPUT键。程序输入完后,我们可以进行程序的修改:替换(在键盘缓冲区输入要替换的字符,按下ALTER键),删除(删除单个字符,光标移动到要删除的字符按DELETE;删除一段,将光标移动到要删除的那一段上),程序输入完了后锁上。程序的检索,例如检索O313按下面步骤进行操作方式在编辑状态下—按PRGRM(进入程序画面)—输入查找的程序号O313—按箭头向下的光标键找O313程序号。程序的删除,例如删除O313按下面步骤进行:操作方式在编辑状态下—打开程序保护锁—按PRGRM(进入程序画面)—输入删除的程序号O313—按箭头向下的光标键找O313程序号—键入删除的程序号O313—按DELET—操作完毕、锁上程序保护锁—按功能软件上的LID查看O313程序是否在程序例表中。1.2.4对刀对刀的方法直接影响工件的加工精度。所以对于不同的加工零件,我们要选择不同的对刀方法。X和Y向对刀,对于圆柱孔(或圆柱面)零件时:(1)我们采用杠杆百分表(或千分表)对刀,这种对刀方法精度高,但是比较麻烦。(2)采用寻边器对刀,对于精度不太高,比较直观。X和Y向对刀,当对刀点为互相垂直直线的交点时:(1)采用刀具试切对刀。(2)采用寻边器对刀,精度高。在Z向对刀,Z向对刀数据与刀具在刀柄上的装夹长度及工件坐标系的Z向零点位置有关,它确定工件坐标系的零点在机床坐标系中的位置。加工中心采用长度补偿来做。为了损伤工件表面,在本设计中我们采用采用对刀杆对刀。移动机床将刀杆分别从X、Y慢慢靠近工件,若X方向显示的是X1,Y方向显示的是Y1。再反方向得到X2,Y2则分别记下此数据。我们采用G54坐标系,记下X、Y的值,按POS键,输入到G54坐标系中。程序原点X、Y的计算方法如下:X=(X1-X2)/2Y=(Y1-Y2)/2Z轴偏值:将株洲移动到工件的上表面,并与工件有微量的切削,纪录此值。按SYSTEM→SFF/SET→偏值,把Z轴的工件坐标值输入到对应的刀号的刀偏表长度补偿中。把计算的结果输入工件偏置画面中的G54中。1.2.5刀具长度补偿设置加工中心上使用的刀具很多,每把刀具的长度和到Z坐标零点的距离都不相同,这些距离的差值就是刀具的长度补偿值,在加工时要分别进行设置,并记录在刀具明细表中,以供机床操作人员使用。一般有两种方法:1、机内设置这种方法不用事先测量每把刀具的长度,而是将所有刀具放入刀库中后,采用Z向设定器依次确定每把刀具在机床坐标系中的位置,具体设定方法又分两种。(1)第一种方法将其中的一把刀具作为标准刀具,找出其它刀具与标准刀具的差值,作为长度补偿值。具体操作步骤如下:①将所有刀具放入刀库,利用Z向设定器确定每把刀具到工件坐标系Z向零点的距离,如图1.1所示的A、B、C,并记录下来;②选择其中一把最长(或最短)、与工件距离最小(或最大)的刀具作为基准刀,如图5-2中的T03(或T01),将其对刀值C(或A)作为工件坐标系的Z值,此时H03=0;③确定其它刀具相对基准刀的长度补偿值,即H01=±│C-A│,H02=±│C-B│,正负号由程序中的G43或G44来确定。④将获得的刀具长度补偿值对应刀具和刀具号输入到机床中。图1.11.2.6刀具半径补偿设置进入刀具补偿值的设定页面,移动光标至输入值的位置,根据编程指定的刀具,键入刀具半径补偿值,按INPUT键完成刀具半径补偿值的设定。操作如下:按SYSTEM→SFF/SET→输入刀具的半径补偿值。1.2.7机床操作面板的简单介绍下图1.2操作面板是FANUC—0I系统的操作面板,图1.3是操作棉板的功能键板。图1.2图1.3显示现在机床坐标的位置(绝对坐标、相对坐标、相对坐标)。程序功能键,显示编辑的程序或正在运行的程序。刀具补偿表,设定工件坐标系,参数等。换档键,在编辑中进行字母和数字的切换。取消键,用于删除已输入存储器里的最后一个字符。输入参数和补偿值。程序的删除。程序的插入,在程序的修改过程中经常用到。替换键,程序的编辑、修改。图形显示键,观察刀具在加工过程中的图形显示。报警信息显示按钮。页面键有两个,用来进行页面的前/后翻。机床参数键。1.3PRO/E软件技术1.3.1PRO/E3.0软件的介绍及其安装Pro/E(Pro/Engineer操作软件)是美国参数技术公司(,简称PTC)的重要产品。在目前的三维造型软件领域中占有着重要地位,并作为当今世界机械CAD/CAE/CAM领域的新标准而得到业界的认可和推广,是现今最成功的CAD/CAM软件之一。Pro/E第一个提出了参数化设计的概念,并且采用了单一数据库来解决牲的相关性问题。另外,它采用模块化方式,用户可以根据自身的需要进行选择,而不必安装所有模块。Pro/E的基于特征方式,能够将设计至生产全过程集成到一起,实现并行工程设计。它不但可以应用于工作站,而且也可以应用到单机上。Pro/E采用了模块方式,可以分别进行草图绘制、零件制作、装配设计、钣金设计、加工处理等,保证用户可以按照自己的需要进行选择使用。2006年4月发布的Pro/ENGINEERWildfire3.0(野火3.0),它将Pro/E的版本上升到了前所未有的高度。它相对与以前的版本,在功能上更加的强大,更加适应“人本”性。Pro/E3.0安装操作如下:1.运行虚拟光驱,再将BIN文件装入光驱,自动运行安装程序(下载版必须由虚拟光驱运行)。2.选择国家:中国。3.接受协议。4.开始安装服务器。5.填入你本机的ID(ID如上图遮盖处的PTC主机ID,区分大小写)点crack文件中的generate,得到license.dat文件,拷贝文件到你找得到的地方。6.指定安装目录和许可证,之后点安装按钮。7.上一步安装完成后,重新启动电脑后。查看服务器是否运行(控制面板>管理工具>服务),下图所示即为已经运行(注:到了这里,这个服务一定要成功并保持运行,否则安装好了也无法使用)。8.再次运行安装程序,选择安装Pro/ENGINEER。9.选择安装语种,但中文默认是已经安装的。注意:野火3.0中已经不再使用lang=chs也能显示中文(建议安装所有模块,除了帮助文件,否则很多模块无法运行)。10.填写主机名,这一步与2.0是不同的。11.点击下一步,一直安装到提示插入第2张光盘,第3张光盘。安装完成后。1.3.2在PRO/E中校徽的特征建模贵大校徽如下图1.4所示图1.4(一)、在Pro/ENGINEERWidfire中单击菜单栏中的新建按钮,打开“新建文件”对话框,文件类型选择为“零件”,子类型选择“实体”,取消使用默认模板,单击“确定”按钮,在“名称”对话框中选择“mmns-part-solid”单击确定按钮后进入零件设计模式。(二)、单击特征工具栏中的拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑面板,单击“定义”按钮,弹出“草绘”对话框,选择TOP,RIGHT分别作为“草绘”平面和参考平面。单击“确定”进入“草绘”界面。(三)、绘制一个200200的正方形,单击确定按钮回到“拉伸”特征操控板,输入拉伸高度为7,单击确定按钮得到一个正方体。(四)、在主菜单中选择“视图(V)→颜色和外观”在外观编辑器中选择一种颜色,在“指定”按钮中选择“曲面”指定长方体的前面单击确定,然后选择外观编辑器中的“映射→贴花”在下一层菜单中的“外观放置”中选择“”按钮来增加“纹理”,然后双击增加的图片,单击“关闭”再单击“关闭”完成“贴花”的命令如图1.5所示:图1.5(五)、在菜单栏中单击拉伸按钮,系统弹出“拉伸”特征操控板,在操控板中打开“放置”上滑板,单击“定义”按钮,选择长方体的TOP和RIGHT分别作为“草绘”平面和参考平面。单击“确定”进入“草绘”界面。(六)、在“草绘”状态下单击样条曲线按钮,用样条曲线去逼近中间贵字图形的轮廓。进行修改,达到满意后,单击完文字按钮,选取行的第二点,确定文本高度和方向,同时出现文本框如图1.6,在输入区中输入“GUIZHOUUNIVERSITY”,选择沿曲线放置,选择曲线圆,单击完成,进行修改,达到满意后,用同样的方法输入“贵州大学”,然后单击样条曲线按钮,用样条曲线去逼近中间文字图形的轮廓,进行修改,达到满意后,如图1.7保存XIAOHUI.prt。成后单击确定按钮,回到上一级对话框输入拉伸深度为2,单击确定按钮完成建模。最后的三维图形如1.8图:图1.6图1.7图1.81.4PRO/NC模块简介PRO/E是由美国参数科技公司(PTC)开发,是一个全方位的三维产品开发综合性软件,集成了零件设计、产品、装配、模具开发、数控加工、钣金设计、铸造件设计、造型设计、自动测量、机构仿真、应力分析、电路布线等功能模块与一体。广泛应用与电子、机械、模具、工艺设计、汽车、航天、服装等行业。是当今世纪最为流行的CAD/CAM软件之一。PRO/NC模块能生成驱动数控机床加工PRO/E零件所必须的数据和信息,能够生成数控加工的全过成。PRO/E系统的全相关统一数据库能将设计模型变化体现到加工信息当中去,利用它所提供的工具将设计模型处理成ASCII码刀位数据文件,这些文件经过后处理变成数据加工数据。PRO/NC生成的数控加工文件包括刀位数据文件、刀具清单、操作报告、中间模型、机床控制文件等。PRO/NC模块应用范围比较广,包括数控车、数控铣、加工中心等。下表1.2是具体的应用范围。表1.2模块名称应用范围PRO/ENC—车床一个转塔车床及钻孔加工二个转塔车床及钻孔加工PRO/ENC—铣床二轴半铣床加工3~5轴铣床加工PRO/ENC—铣削/车削2~5轴车铣综合加工PRO/ENC—Wendm2轴或4轴线切割加工1.5数控自动加工的加工流程PRO/NC进行数控加工时,先用PRO/E的造型模块将零件的几何图形绘制在计算机上,形成零件的设计模型,然后直接调用PRO/E的数控编程模块,定义操作,选择加工方法、定义刀具、加工参数和加工区域,进行刀具轨迹处理,并由计算机的自动对零件加工轨迹的各个节点进行计算和处理。从而生成刀位数据文件;经过相应的后置处理,自动生成数控加工程序,并在计算机上动态的显示其刀具的加工轨迹如图1.9流程:设计模型→制造模型←毛坯夹具设置→制造设置数据←机床数据和刀具数据↓操作设置↓定义NC工序↓生成刀位数据文件↓后置处理↓动态仿真↓→→→↓↑↓↓↓修改←N←正确→Y→NC机床图1.91.6校徽在Pro/NC中的编程实例在建立好模型的基础上,利用Pro/NC进行数控加工的自动编程。下面的实例将对加工的一般过程进行说明:1.在Pro/ENGINEERWidfire中打单击系统工具中新建按钮,打开“新建文件”对话框,选择文件类型为“制造”,子类型选择“NC组件”,取消使用默认模板,单击“确定”按钮,在“文件选项”对话框中选择“mmns-mfg-nc”单击确定按钮后进入制造加工模式。2.在【菜单管理器】中选择→→,选择设计模XIAOHUI.prt。在系统弹出的【元件放置】对话框,选择,在缺省的状态下放置参考模型。3.在【菜单管理器】中选择→→,在消息提示区中输入工件的名称XH,单击在,在创建特征下拉菜单中单击,在实体选向中单击,在放置选向中,单击放置,再单击定义,系统弹出草绘对话框如图1.10,选择如图1.11的平面来作为参照。单击,按做CTRL,选择如图1.12所示的平面作为参照平面,单击参照对话框的关闭。单击,画210mm210mm的矩形。单击,在框中输入10.00,,单击和,完成的图形如图1.13。图1.10图1.114.在【菜单管理器】中选择【制造设置】命令,系统弹出如图1.14所示。同时弹出操作设置对话框,如图1.15。用来对机床、刀具、机床坐标系和退刀平面的设置。图1.11图1.12图1.13图1.145.单击对话框中的图标,再单击,选择。出现刀具设置对话框,如图1.16所示。在刀具设置对话框中输入刀具的材料、长度等参数。图1.15图1.16设置好后单击,单击。加工零点设置:单击加工零点处的,选择坐标,系,拾取模型于其内创建坐标系,选择整个图形,图形出现红色线条,这时出来坐标对话框,按住CTRL选择如图1.17的三个面创建坐标,单击,根据具体的机床进行设置。设置后如下图1.18所示。1.17图1.186.退刀面设置,单击退刀曲面的,在退刀选取中单击,输入Z深度,如图1.19,图1.19单击,在操作设置对话框中单击,则操作OP010已经成功创建。7.参数设置,在【菜单管理器】中选择→→,单击,序列设置如图1.20,单击刀具设置对话框的。在制造参数下拉菜单中选择,完成设置如图1.21所示。图1.20图1.21单击→→→→→,单击。在序列坐标中单击,选取坐标系。重复对刀面的设置。8.创建加工窗口,在定义窗口的下拉菜单中选择,在消息提示区输入窗口的名称,单击,在铣削窗口下拉菜单中选择,选取垂直曲面、边或顶点,截面将相对于它们进行尺寸标注和约束,选择要创建窗口的图形,选择如下参照,单击关闭。单击,画加工窗口,204mm204mm的矩形。单击,单击加工窗口的。单击→。9.轨迹演示,单击,计算CL轨迹,单击图1.22所示。图1.22图1.23选择图1.22中的按钮,则可以见到刀具的走刀路线。
⑻ 在使用电子拉力试验机时总是出现试验打滑是怎么回事
电子拉力试验机试验打滑可谓是整个试验过程中较为常见的一种问题,很多人总认为这是设备的问题,其实不然,人为因素也是致使设备打滑重要因素
造成设备打滑的人为因素是由于操作人员在进行试验时没有按试验的正确方法进行操作而造成的。主要有两方面的因素:试样夹持长度较短和夹具的钳口选择不当。
1、试验夹持长度较短
试验机夹具的正确使用方式应该是,在试件的夹持长度与夹具齿面长度相同时,先借助外力推动钳口,使其在夹持面上产生初始摩擦力,再通过试验机横梁的移动对试样加载,摩擦力拉动钳口(楔形口)时由于斜面的作用,轴向拉力越大,产生的夹持力也越大,试验机夹具体上有两个斜面的楔形口正是依据上述夹持方式,按照接受均匀压应力设计的。但是,有些操作人员并没有按照试验机的使用要求进行操作,试样夹持长度较短,或者是试样加工的就太短,造成楔形口斜面受力不均楔形口局部应力远远超过材料的屈服强度,从而使楔形口产生塑性变形、严重外翻,使楔形口斜面塌陷或磨损。夹具在这种情况下继续使用,减小了楔形口的角度,使夹具本体受力状态恶化而出现打滑现象。
2、夹具的钳口选择不当
电子拉力试验机夹具有多种不同的规格和夹面,针对不同的试样采用不同的夹头,有些操作人员在试验时,使用大规格钳口夹持小截面试样,或使用平夹头夹持大试样,使得夹具与试样接触不紧密,摩擦系数明显降低,直观的表现为夹具的鳞状尖峰被除数磨平,摩擦力大幅度的减小。当试样受力逐渐增大达到大静摩擦力时,试样就会打滑,从面产生虚假屈服现象。
当然也有可能是设备原因致使电子拉力机试样打滑
在拉试样时由于氧化铁皮落入楔形块斜面而引起打滑。金属试样在进行拉拔过程中产生金属氧化铁皮,氧化铁皮会落入到楔形块与夹具相结合的斜面中,使得斜面的平整度被破坏、表面粗糙度严重下降,使楔形口(楔形块)运动不灵活,在拉力不断增加时,楔形块沿燕尾斜面的滑动中产生爬行(跳跃行进)。拉伸加载过程中时常出现的叭、叭之声,就是这样产生的。这就是通常所说的打滑。
电子拉力试验机打滑解决办法:
针对以上由于人为因素和设备因素引起的打滑原因,制定了以下几点对策,通过对策的施行可以减少或消除打滑现象。
1、对楔形斜面进行修复
对楔形块产生塑性变形、严重外翻,使楔形块斜面塌陷或磨损的应及时进行修复,修复一般可以采取以下两种方法.
a、补焊。对楔形块斜面塌陷或磨损部分先进行补焊,然后用插床进行复原(如果机加工达不到粗糙度要求,还应进行刮研)。补焊部位的硬度、强度一般会有所提高,以后注意正确使用夹具就可以了。
b、镶嵌。对楔形块斜面按原设计角度用插床去除10毫米,然后在此部位镶嵌一块磨光的淬火钢板。
c、在夹具体上加装垫板。这种方式对夹具本体的设计强度略有削弱,但长期使用效果较好。
d、楔形块上方加上防层装置。为了防止金属试样在拉伸过程中氧化铁皮落入楔形块斜面,可以在楔形上方安上两块橡皮块,这样就可以有效的减少氧化铁皮落入斜面,另外可以在楔形块斜面涂上黄油或润滑脂,并且定期对夹具进行擦洗和换油。
2、规范试验机的操作规程
针对试样夹持长度较短和夹具的钳口选择不当,在电子拉力试验机的操作规程中,必须规定:“拉伸试样的夹持长度,不得小于夹具齿面的长度”和“不准使用用于大截面的钳口夹持小截面试样或使用平夹头夹持大试样”。操作人员必须按操作规程进行试验。
我们是电子拉力试验机,电子万能试验机厂家江苏拓达精诚测试仪器有限公司
关于电子拉力试验机试验问题,如您想了解更多内容搜索:电子拉力机-橡胶-电子拉力试验机-江苏拓达精诚测试仪器有限公司 关注我们
⑼ UG中怎样编辑加工数据库
如果学数控建议你学UG
一套针对机床加工编程最完善的解决方案
源于UGS数字化产品开发方案,
NX针对机床程序设计研发出了一套完善的、经过实践检验的系统。NX机械加工采用了领先的前沿技术和先进的加工方法,使制造工程师和NC程序员的效率达到了最佳状态。
生产力和效率达到了最佳状态
运用NX机械加工,各公司可以将他们的NC设计、制造工程和加工方法进行演进和转化,从而大大地减少浪费,显着地提高人力和机械资源的生产力。
设计到制造的一体化
NX机械加工将NX的产品开发方案完全地组成为一个整体。NC程序员可以在相同且统一的系统下直接进行全面设计、装配和工程制图。制造结合性意味着设计可以根据加工工艺情况自动进行改变。运用这套完
整的开发方案,程序员和制造工程师只需要对部件模型进行操作,制作和组装夹具,设置车床路径,甚至可以应用三维加工模拟对整套设备进行模拟
机械加工所包含的全部方案
对机床及其操作的广泛支持 全套加工应用
● 两轴和三轴的铣削 ● 车床路径确认
● 五轴铣削 ● 机床模拟
● 钻孔 ● 后处理程序的构建和编辑
● 车削 ● 方法,流程模板
● 车铣结合 ● 刀具库
● 融合车床 ● 进给量和主轴速度资料
● 线切割加工(EDM) ● 基于特征的加工编程
● 雕刻,刻模 ● 零件和装配建模及编辑
● 基于特征的加工编程 ● 工装,夹具设计
● 高速铣加工 ● 机床建模和运动仿真
● 几何体转换器
● 车间工艺文档输出
● 数据管理
自动化生产力
通过对设计任务先进的自动控制,NX机械加工减少了设计时间和所需的技能水平。NX基于特征的设计,可以直接从零件设计模式自动生成最优化的加工程序。加工模板和特殊方法可以确保更优越和经实践检验加工方法的应用。从而可以保证制成品和加工方法的高质量水平。
模拟仿真确保质量使用NX机械加工软件的公司可以利用其完整的模拟仿真工具,确保程序符合车间首试成功的质量要求,而无须多次试切实验。完整的切削仿真和机床运动模拟可以在NX设计环境中立即进行,不需要独立系统和数据转换。
领先科技的效率
NX加工软件模块的高性能和加工能力可以大大提高生产效率,可以帮助公司应用最新机床和加工技术从而获得最大的利益。NX支持多主轴车铣加工中心,可以免除多台机器的使用、节省工件装卸和运输时间。NX支持高速加工,从而最大化切削性能、切削速度和提高表面光洁度。NX先进的支持多主轴加工编程,可以实现对车铣加工中心的完全控制,使最复杂部件的NX编程速度更快。NX加工应用模块完全集成在NX数字化产品开发方案之中,使产品从设计到制造都保持同步。
经过实践验证的多轴加工技术
多轴加工可以运用较少的装卡操作和步骤,有效率地生产精密复杂的部件,减少成本、浪费和交货时间。高效、精确的多轴加工在参数设置和切割顺序方面需要相当大的机动性。NX成熟的NC处理器、多级控制和用户定义驱动方式均可以满足这些要求。
全面性
NX是最完整和全面的NC编程系统。从数年航空和相关行业开发出来的、经实践验证过的能力使NX可以提供有效、精确的多轴加工。NX有一系列的刀轴控制方法,支持在加工复杂表面时可以精确地控制机床刀轴的运动方式,并且同时可以进行碰撞和干涉检查。
灵活性
NX拥有许多在复杂表面精确定义可控制机床刀路轨迹的机动方法。可变轴铣削附带很多驱动方式和一系列机床刀轴的控制选项。这些都配备了许多工作都必需的碰撞和干涉检查能力。
塑料模和冷冲模模具制造
快速完成
在昨天看来,快速交货也许还是不可能的事情——但是应用NX,你就拥有了更迅速、更有效并且以更低成本实现目标的工具,而且可以保证既定的产品质量。
实现最高效率
NX的加工自动化、最新的机床刀路计算技术和从机床设计到制造的一体化方案可以帮助你在塑料模和冷冲模模具制造方面获得最大的生产力。广泛有效的模具加工能力包括Z高度方向粗加工、半精加工、陡峭和非陡峭区的铣加工、清根加工、精加工和侧壁轮廓铣加工等。面向特征的加工和基于流程的自动化可以大大减少塑料模和冷冲模模具结构编程时间。
高速加工:使硬质材料切削更简便
等体积材料切削
成功的高速铣粗加工在管理机床负载的同时保持着金属材料切削的速度。NX追踪每一刀加工后的残留余量并相应调整机床路径,保证在最短加工时间内获得最好的精铣效果。
在陡峭和平缓区域内获得相同的加工表面效果
半精加工时在陡峭区域内Z方向刀轨之间自动增加机床刀轨,保证和平缓区域有相同精度的切痕,从而确保在精加工操作中切削的一致性
经验证的、集成的加工数据
NX拥有一个可定制化的加工数据库,允许用户管理和使用那些经验证的机床参数,这些参数对应着相关的机床操作,如模具行业典型的模具钢P20的所有加工相关数据。
快速生成机床刀路
最新的Z (Level) 高度铣削软件Rest-Milling可以进行机床刀路的超高速计算,这样就可以设定更小的公差值,确保获得高精度和稳定的Rest-Milling铣削效果。
精细调优的高速铣加工输出
NX机床路径针对对高速设备控制器进行了精细调优。均匀分布的点到点运动、相切圆弧拐角和NURBS(曲线曲面的非均匀有理B样条)输出选项使用户可以根据每个任务的参数匹配不同的方法。
适用于多功能机床的完整解决方案
NX提供了一整套机械加工方案支持最新的多功能机床设备。并不是所有的系统都可以支持车铣加工中心。此外,程序设计通常需要较为复杂的定位、工作坐标系协调和机床刀轴控制。NX具有高度灵活的加工配置,可以满足这些需要。
同步管理控制器对多功能的控制
NX为每个加工功能提供动态的显示,作为一个信道在显示器上显示出来。启动和等待代码控制着每个加工工序的流程。集成的机床模拟仿真可对整个流程进行可视化确认。
多功能机床的刀路轨迹后处理器
每个机床功能均要求有一个具体的后处理程序,然后融合在一个同步输出集合里。NX后处理程序不受CL刀路文件内容的限制,直接和内部的机床路径定义相连接。它可以存取NX机械加工数据库的任何数据,从而可以在后期处理阶段实现自动化决策。
NX后处理器Post Builder
客户和方案的执行者可以用它创建和编辑后处理程序,工作范围从样版配置到自己的特定技术参数。典型设备和控制器配置的标准后处理程序很容易进行编辑。NX也可以创建用作第三方后处理程序输入的CLS文件。
生产力的最大化
一个系统、所有功能
NX涵盖了完整的NC编程和后处理、切削仿真和机床运动模拟功能。此外,其以市场需求为导向的设计和装配软件可用于构建产品、工装和夹具、刀具,同时也可以创建机床的三维模型供模拟使用
通过流程和建立模板实现自动化
为了方便编程员的工作,NX中的机械加工程序对每台机器类型和配置采用了代表典型加工方法的模板。在进行新工作的时候,通过选择和运用模板,许多费时的任务都可以自动应用,具体的设备控制参数可以预设,从而使任务进展速度更快、更简洁并具有可重复性。
机械加工模拟
精确的模拟是优化机床对多部件进行复杂加工编程的基础。NX提供了全套的机床刀路和机床运动模拟,机床运动模拟由后处理代码驱动——并且总是在NX编程环境中运行。
通过编程自动化提高生产力
NC编程中的自动化为获得商业竞争优势提供了机会。自动化使得编程更快,并具有可重复性。它每次都可以产生专业的NC代码。
实践经验自动化
在NX中从设计到加工的全自动化解决方案可以提供特别的商业优势,将最佳实践自动应用于关键编程任务,可以轻松应对变动最频繁的工作。
流程向导
对普通任务的日常运用,公司可以在NX中按照简单、方便的步骤创建自己的流程向导。流程向导可以根据用户的简单选择定义出复杂的软件设置。
流程模板
NX让程序员可以运用规则驱动型预定义的流程和工艺模板,这就使编程任务实现了自动化,同时也缩短了时间,确保应用了理想的加工方法、刀具和工艺,对经验较少的用户有很大帮助。用户可以轻松地创建新的模板或者修改已有的模板。
基于特征的加工编程
NX编程自动化可以直接在部件模型中创建制造特征。特征识别,甚至是源于导构的线型框架几何图形,加上自动流程选择和机床刀路生成,与标准技术相比,可以缩短超过百分之九十的编程时间。
模拟仿真确保首试质量
NX机械加工提供了完整的工具,用于对整套加工流程进行模拟和确认。NX拥有一系列可扩展的模拟仿真方案,从机床刀路显示到动态切削模拟以及完全的机床运动仿真。
机床刀路验证
作为NX的标准功能,我们可以立即重新执行已计算好的机床刀路。NX有一系列显示选择项,包括在毛坯上进行动态切削模拟。
机床运动仿真
NX机械加工模块内完整的机床运动仿真可以由NX后处理程序输出进行驱动。机床的三维实体模型以及加工部件、夹具和刀具将会按加工代码,照已经设定好的机床移动方式进行运动。
同步显示
使用NX可以以全景或放大模式动态地观察到在完整的机床模拟环境中对毛坯进行动态切削仿真。
VCR(录像机)模式控制
NX提供了简单的屏幕按钮控制模拟显示,就如同我们所熟悉的录像回放装置中的典型控制一样。
缩短在机床上的验证时间
使用NX,程序员无需在机床上进行耗时的检测,而只需要在计算机上验证部件程序即可。
碰撞检测
NX可以自动检测部件、正在加工的毛坯、刀具、刀柄和夹具以及机床结构之间是否存在实际的或接近的碰撞。
输出显示
随着模拟的运行,NC执行代码将实时显示在滚动屏上。
一个系统集成全部功能
内置三维建模和装配
使用NX的程序员可以立即访问完整的几何部件和装配模型,这些都位于同一环境之下。应用这项功能,程序员可以修改部件或毛坯的形状,也可以对刀具、复杂的夹具、甚至是整个机床进行建模。NX装配建模使加工操作的所有要素可以正确定位,并可以立即实施交互式编程和模拟。
无须复制
在统一的NX系统内,集成化的确认和机床模拟系统与独立的验证和模拟软件包相比具有一个显着的优点。它无须翻译、转换或复制数据及已做的工作,并且发生错误的几率更小。所有的部件、库存、夹具、加工刀具和机床模型都运用于NX内部的NC编程和模拟仿真模块中。
控制器驱动机床运动仿真
NX机床运动仿真利用内植的实际控制器软件实现机床运动的精确显示。精确运动、加速、速度和时间及特殊循环都能够得以精确模拟。
创建新的机床模型
使用NX,用户可以应用强大的三维建模和装配工具,非常简便地创建或编辑三维机床模拟模型。NX还可以导入以其它系统或格式创建的三维机床设备模型。
车削、线切割加工和标准铣削
NX机械加工拥有范围广泛的铣削能力,固定轴铣削为三轴加工生成机床刀路提供了完整的工具。象型腔铣和清根模块的自动化操作减少了加工部件所需的步骤一样,平面铣加工的优化技术有助于缩短加工多腔和凸台类部件的时间。
车削
NX的车削功能可以面向二维部件轮廓或者是完整的三维实体模型编程。它包括粗车、多步骤精车、预钻孔、攻螺纹和镗孔等程序。程序员可以规定诸如进给速度、主轴转速和部件间隙等参数。NX车削可以进行A、B轴控制。除了普通任务的丰富功能之外,一个特殊的“教学模式”给用户提供了额外的精加工和特殊加工情况的控制方法。NX具有很大的机动性,允许在XY或ZX环境中进行卧式、立式或者倒立方向的编程。
线切割加工
NX线切割加工编程从接线框或实体模型中产生,实现了两轴和四轴模式下的线切割。可以利用范围广泛的线操作,包括多次走外型、钼丝反向和区域切除。该程序包也可以支持调节Glue Stops 、各种钼丝线径尺寸和功率设置。线切割广泛支持包括AGIE、Charmilles及其它加工设备
后处理和车间工艺文档
集成的NC后处理
NX拥有后处理生成器,可以图形方式创建从二轴到五轴的后处理程序。运用后处理程序生成器,用户可以指定NC编码所需的参数以及用于阐释内部NX机床刀路所需的机床运动参数。
工艺文档的编制,包括工艺流程图、操作顺序信息和工具列表等,通常需要消耗很多时间并被公认是最大的流程瓶颈。NX可以自动生成车间工艺文档并以各种格式进行输出,包括ASCII 车间工艺文档或用于工厂内部局域网的HTML格式。
NX:支持部件制造的解决方案
NX可管理的开发环境
NX利用Teamcenter技术提供了跨越生命周期每个阶段对产品及流程信息进行控制和同步共享的性能。
从设计到制造一体化
在可管理的制造环境中,产品设计师、工艺师及所有制造领域之间可以实现跨学科的协作。
可管理环境对制造专家的价值
非常典型情况是,制造专家通常仅仅为了寻找资料会花60%以上的时间。使用了错误的资料通常会导致延期或者原料浪费。进入可管理的开发环境中的每个人都可以找到并运用他们完成任务所需的正确数据,既节省了时间,又确保了首次加工成功和产品质量。
工装模具设计中的增值服务—制造的最优化
NX软件系列为模具设计提供了一套高度自动化的解决方案。就象专家一样,NX注塑模具向导、NX多工位级进模向导以及NX冷冲模设计软件大大减少了模具设计所需的时间。可共享的NX技术意味着将NX模具设计应用和NX加工能力进行倍增:减少整体流程用时,使效率最大化,生产出具有高度重复性的高品质产品。
演进冷冲模设计技术
NX提供了一套面向流程的工具,用于定义冷冲模流程技术参数,包括模具布局和模具分析及详细的模具设计。该软件包自动地将成本较高而费时的流程与相对应的金属冲压件模型相关联,从而大大地缩短了生产时间。
与加工制造相集成
自动化的模具设计软件使用共享的三维几何体,它可以直接创建模具型面、模架及其它模具结构件,同时可以轻松地进行相关联的更新。
多工位级进模设计
多工位级进模向导通过采用经验证的行业知识和经验自动化控制多工位级进模的设计生产,使用户生产力达到最大化。它将专家的知识电子化并为多工位级进模设计提供了完整的环境,同时也具备融合客户具体要求的高度灵活性。
注塑模设计
NX注塑模设计向导直接从制件模型开始进行模具型腔和结构部件的设计,全部流程序实现自动操作。注塑模设计向导直接面向关键特征数据,驱动NX CAM功能自动化生成机床加工刀路。