当前位置:首页 » 操作系统 » 剖析数据库

剖析数据库

发布时间: 2022-08-11 06:10:22

⑴ 数据挖掘有哪些方法

1、神经元网络办法


神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。


2、遗传算法


遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。


3、决策树算法办法


决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。


4、遮盖正例抵触典例办法


它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。


5、数据剖析办法


数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。


6、含糊集办法


即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。

⑵ 剖析数据库资料提供

什么意思,是不明白数据库相关的概念吗?

⑶ 关于数据库安全及其防范方案的分析

关于数据库安全及其防范方案的分析
随着网络的不断发展,数据的共享日益加强,数据的安全保密越来越重要。为了计算机数据库整体安全性的控制,需要做好很多细节性的工作,并根据具体应用环境的安全需要来分析安全薄弱环节,并制定统一的安全管理策略加以实施,以保证其最高的安全性。
1.数据库安全环境的分析
随着时代的发展,我国的计算机信息安全标准也在不断提升。在当下的数据库系统安全控制模块中,我国数据库安全分为不同的等级。但是总体来说,我国的数据库安全性是比较低的,这归结于我国数据技术体系的落后。为了更好的健全计算机数据库体系,进行数据库安全体系的研究是必要的。我国现有的一系列数据安全理论是落后于发达国家的。这体现在很多的应用领域,比如电力领域、金融领域、保险领域等。很多软件都是因为其比较缺乏安全性而得不到较大范围的应用,归根结底是数据库安全性级别比较低。
为了满足现阶段数据库安全工作的需要,进行相关标准的深化研究是必要的。这需要对数据库安全进行首要考虑,且需要考虑到方方面面,才更有利于数据库保密性的控制,从而保证这些数据存储与调用的一致性。
在当前数据库安全控制过程中,首先需要对这些数据进行可用性的分析,从而有利于避免数据库遭到破坏,更有利于进行数据库的损坏控制及其修复。其次为了保证数据库的安全性、效益性,也离不开对数据库整体安全性方案的应用。最后必须对数据库进行的一切操作进行跟踪记录,以实现对修改和访问数据库的用户进行追踪,从而方便追查并防止非法用户对数据库进行操作。
2.数据库安全策略的更新
为了满足现阶段数据库安全性方案的应用,进行身份的鉴别是必要的。所谓的身份鉴别就是进行真实身份及其验证身份的配比,这样可以避免欺诈及其假冒行为的发生。身份鉴别模式的应用,表现在用户使用计算机系统进行资源访问时。当然在一些特定情况下,也要进行身份鉴别,比如对某些稀缺资源的访问。
身份鉴别通常情况下可以采用以下三种方法:一是通过只有被鉴别人自己才知道的信息进行鉴别,如密码、私有密钥等;二是通过只有被鉴别人才拥有的信物进行鉴别,如IC 卡、护照等;三是通过被鉴别人才具有的生理或者行为特征等来进行鉴别,如指纹、笔迹等。
在当前访问控制模块中,除了进行身份鉴别模式的应用外,还需要进行信息资源的访问及其控制,这样更有利于不同身份用户的权限分配。这就需要进行访问级别的控制,针对各个系统的内部数据进行操作权限的控制,进行自主性及其非自主性访问的控制,满足数据库的安全需要。实现用户对数据库访问权限进行控制,让所有的用户只能访问自己有权限使用的数据。当某一个用户具有对某些数据进行访问的权限时,他还可以把对这些数据的操作权限部分或者全部的转移给其他用户,这样其他的用户也获得了对这些数据的访问权。
为了更好的进行数据库的安全管理,审计功能的应用也必不可少。这需要就数据库的数据进行统一性的操作。这样管理员更加方便对数据库应用情况进行控制,审计功能也有利于对数据库的操作行为进行控制,更有利于控制用户对数据库的访问。攻击检测是通过升级信息来分析系统的内部和外部所有对数据库的攻击企图,把当时的攻击现场进行复原,对相关的攻击者进行处罚。通过这种方法,可以发现数据库系统的安全隐患,从而来改进以增加数据库系统的安全性。
在数据库数据处理过程中,可以进行一些合法查询模式的应用,当需要调取保密数据时,就需要应用推理分析模块。这是数据库安全性方案控制过程中的重难点,而通过这种简单的推理分析方法调取保密数据,是得不到有效解决的。但是我们可以使用以下几种方法来对这种推理进行控制:数据加密的基本思想就是改变符号的排列方式或按照某种规律进行替换,使得只有合法的用户才能理解得到的数据,其他非法的用户即使得到了数据也无法了解其内容。
通过对加密粒度的应用,更有利于进行数据库加密性的控制。其分为几种不同的应用类型等级。在当前应用模块中,需要进行数据保护级别的分析,进行适当的加密粒度的分析。更有利于满足数据库级别加密的需要。该加密技术的应用针对的是整体数据库,从而针对数据库内部的表格、资料等加密。采用这种加密粒度,加密的密钥数量较少,一个数据库只需要一个加密密钥,对于密钥的管理比较简单。但是,由于数据库中的数据能够被许多的用户和应用程序所共享,需要进行很多的数据处理,这将极大的降低服务器的运行效率,因此这种加密粒度只有在一些特定的情况下才使用。
表级加密也是比较常用的方法,这种方法应用于数据库内部的数据加密。针对具体的存储数据页面进行加密控制。这对于系统的运行效率的提升具备一定的帮助,不会影响系统的运行效率。这种方法需要应用到一些特殊工具进行处理,比如解释器、词法分析器等,进行核心模块的控制,进行数据库管理系统源代码的控制及其优化。但是其难以确保数据库管理系统的整体逻辑性,也存在缺陷。记录级加密;这种加密技术的加密粒度是表格中的每一条记录,对数据库中的每一条记录使用专门的函数来实现对数据的加密、解密。通过这种加密方法,加密的粒度更加小巧,具有更好的选择性和灵活性。字段级加密;这种加密技术的加密粒度是表格中的某一个或者几个字段。通过字段级的加密粒度只需要对表格中的敏感列的数据进行加密,而不需要对表格中的所有的数据进行加密。
选择加密算法也是比较常见的数据加密方法。它是数据加密的核心部分。对于数据库的整体安全性的控制具有直接性的影响。通过对加密算法的分析,得知其分为公共密钥加密及其对称加密。在数据加密模块中,需要进行密文及其明文的区分,从而进行明文及其密文的转换,也就是普遍意义上的密码。密码与密钥是两个不同的概念。后者仅是收发双方知道的信息。在数据加密技术中,对密钥进行管理主要包括以下几个方面,产生密钥。产生怎样的密钥主要取决于使用什么样的算法。若产生的密钥强度不一样就称这种算法实现的是非线性的密钥空间,若产生的密钥强度一样就称这种算法实现的是线性的密钥空间。分配密钥、传递密钥:分配密钥就是产生一个密钥并且将这个密钥分配给某个用户使用的过程。
密钥的传递分为不同的应用形式,集中式与分散式。所谓的集中式就是进行密钥整体式的传递;所谓的分散式就是对密钥的多个部分进行划分,以秘密的方法给用户进行传递。通过将整体方法与分散方法应用到存储模块中,更好的满足现阶段数据库整体安全性的需要。对于密钥的备份可以使用和对密钥进行分散存储一样的方式进行,以避免太多的人知道密钥;而销毁密钥需要有管理和仲裁机制,以防止用户对自己的操作进行否认。
3.结束语
随着计算机,特别是网络的不断发展,数据的共享日益加强,数据的安全保密越来越重要。本文详细阐述了数据库的安全防范,分别从数据分析、用户鉴别、访问权限控制、审计、数据加密等环节逐一剖析数据库安全。为了计算机数据库整体安全性的控制,需要做好很多细节性的工作,并根据具体应用环境的安全需要来分析安全薄弱环节,并制定统一的安全管理策略加以实施,以保证其最高的安全性。

⑷ 数据库三大范式究竟是什么

数据库范式1NF 2NF 3NF BCNF(实例)
设计范式(范式,数据库设计范式,数据库的设计范式)是符合某一种级别的关系模式的集合。构造数据库必须遵循一定的规则。在关系数据库中,这种规则就是范式。关系数据库中的关系必须满足一定的要求,即满足不同的范式。目前关系数据库有六种范式:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、第四范式(4NF)、第五范式(5NF)和第六范式(6NF)。满足最低要求的范式是第一范式(1NF)。在第一范式的基础上进一步满足更多要求的称为第二范式(2NF),其余范式以次类推。一般说来,数据库只需满足第三范式(3NF)就行了。下面我们举例介绍第一范式(1NF)、第二范式(2NF)和第三范式(3NF)。
在创建一个数据库的过程中,范化是将其转化为一些表的过程,这种方法可以使从数据库得到的结果更加明确。这样可能使数据库产生重复数据,从而导致创建多余的表。范化是在识别数据库中的数据元素、关系,以及定义所需的表和各表中的项目这些初始工作之后的一个细化的过程。
下面是范化的一个例子 Customer Item purchased Purchase price Thomas Shirt $40 Maria Tennis shoes $35 Evelyn Shirt $40 Pajaro Trousers $25
如果上面这个表用于保存物品的价格,而你想要删除其中的一个顾客,这时你就必须同时删除一个价格。范化就是要解决这个问题,你可以将这个表化为两个表,一个用于存储每个顾客和他所买物品的信息,另一个用于存储每件产品和其价格的信息,这样对其中一个表做添加或删除操作就不会影响另一个表。
关系数据库的几种设计范式介绍

1 第一范式(1NF)
在任何一个关系数据库中,第一范式(1NF)是对关系模式的基本要求,不满足第一范式(1NF)的数据库就不是关系数据库。
所谓第一范式(1NF)是指数据库表的每一列都是不可分割的基本数据项,同一列中不能有多个值,即实体中的某个属性不能有多个值或者不能有重复的属性。如果出现重复的属性,就可能需要定义一个新的实体,新的实体由重复的属性构成,新实体与原实体之间为一对多关系。在第一范式(1NF)中表的每一行只包含一个实例的信息。例如,对于图3-2 中的员工信息表,不能将员工信息都放在一列中显示,也不能将其中的两列或多列在一列中显示;员工信息表的每一行只表示一个员工的信息,一个员工的信息在表中只出现一次。简而言之,第一范式就是无重复的列。

2 第二范式(2NF)
第二范式(2NF)是在第一范式(1NF)的基础上建立起来的,即满足第二范式(2NF)必须先满足第一范式(1NF)。第二范式(2NF)要求数据库表中的每个实例或行必须可以被惟一地区分。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。如图3-2 员工信息表中加上了员工编号(emp_id)列,因为每个员工的员工编号是惟一的,因此每个员工可以被惟一区分。这个惟一属性列被称为主关键字或主键、主码。
第二范式(2NF)要求实体的属性完全依赖于主关键字。所谓完全依赖是指不能存在仅依赖主关键字一部分的属性,如果存在,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与原实体之间是一对多的关系。为实现区分通常需要为表加上一个列,以存储各个实例的惟一标识。简而言之,第二范式就是非主属性非部分依赖于主关键字。

3 第三范式(3NF)
满足第三范式(3NF)必须先满足第二范式(2NF)。简而言之,第三范式(3NF)要求一个数据库表中不包含已在其它表中已包含的非主关键字信息。例如,存在一个部门信息表,其中每个部门有部门编号(dept_id)、部门名称、部门简介等信息。那么在图3-2的员工信息表中列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。简而言之,第三范式就是属性不依赖于其它非主属性。
数据库设计三大范式应用实例剖析
数据库的设计范式是数据库设计所需要满足的规范,满足这些规范的数据库是简洁的、结构明晰的,同时,不会发生插入(insert)、删除(delete)和更新(update)操作异常。反之则是乱七八糟,不仅给数据库的编程人员制造麻烦,而且面目可憎,可能存储了大量不需要的冗余信息。
设计范式是不是很难懂呢?非也,大学教材上给我们一堆数学公式我们当然看不懂,也记不住。所以我们很多人就根本不按照范式来设计数据库。
实质上,设计范式用很形象、很简洁的话语就能说清楚,道明白。本文将对范式进行通俗地说明,并以笔者曾经设计的一个简单论坛的数据库为例来讲解怎样将这些范式应用于实际工程。
范式说明
第一范式(1NF):数据库表中的字段都是单一属性的,不可再分。这个单一属性由基本类型构成,包括整型、实数、字符型、逻辑型、日期型等。
例如,如下的数据库表是符合第一范式的:
字段1 字段2 字段3 字段4
而这样的数据库表是不符合第一范式的:

字段1 字段2 字段3 字段4
字段3.1 字段3.2
很显然,在当前的任何关系数据库管理系统(DBMS)中,傻瓜也不可能做出不符合第一范式的数据库,因为这些DBMS不允许你把数据库表的一列再分成二列或多列。因此,你想在现有的DBMS中设计出不符合第一范式的数据库都是不可能的。
第二范式(2NF):数据库表中不存在非关键字段对任一候选关键字段的部分函数依赖(部分函数依赖指的是存在组合关键字中的某些字段决定非关键字段的情况),也即所有非关键字段都完全依赖于任意一组候选关键字。
假定选课关系表为SelectCourse(学号, 姓名, 年龄, 课程名称, 成绩, 学分),关键字为组合关键字(学号, 课程名称),因为存在如下决定关系:
(学号, 课程名称) → (姓名, 年龄, 成绩, 学分)
这个数据库表不满足第二范式,因为存在如下决定关系:
(课程名称) → (学分)
(学号) → (姓名, 年龄)
即存在组合关键字中的字段决定非关键字的情况。
由于不符合2NF,这个选课关系表会存在如下问题:
(1) 数据冗余:
同一门课程由n个学生选修,"学分"就重复n-1次;同一个学生选修了m门课程,姓名和年龄就重复了m-1次。
(2) 更新异常:
若调整了某门课程的学分,数据表中所有行的"学分"值都要更新,否则会出现同一门课程学分不同的情况。
(3) 插入异常:
假设要开设一门新的课程,暂时还没有人选修。这样,由于还没有"学号"关键字,课程名称和学分也无法记录入数据库。
(4) 删除异常:
假设一批学生已经完成课程的选修,这些选修记录就应该从数据库表中删除。但是,与此同时,课程名称和学分信息也被删除了。很显然,这也会导致插入异常。
把选课关系表SelectCourse改为如下三个表:
学生:Student(学号, 姓名, 年龄);
课程:Course(课程名称, 学分);
选课关系:SelectCourse(学号, 课程名称, 成绩)。
这样的数据库表是符合第二范式的, 消除了数据冗余、更新异常、插入异常和删除异常。
另外,所有单关键字的数据库表都符合第二范式,因为不可能存在组合关键字。
第三范式(3NF):在第二范式的基础上,数据表中如果不存在非关键字段对任一候选关键字段的传递函数依赖则符合第三范式。所谓传递函数依赖,指的是如果存在"A → B → C"的决定关系,则C传递函数依赖于A。因此,满足第三范式的数据库表应该不存在如下依赖关系:
关键字段 → 非关键字段x → 非关键字段y
假定学生关系表为Student(学号, 姓名, 年龄, 所在学院, 学院地点, 学院电话),关键字为单一关键字"学号",因为存在如下决定关系:
(学号) → (姓名, 年龄, 所在学院, 学院地点, 学院电话)
这个数据库是符合2NF的,但是不符合3NF,因为存在如下决定关系:
(学号) → (所在学院) → (学院地点, 学院电话)
即存在非关键字段"学院地点"、"学院电话"对关键字段"学号"的传递函数依赖。
它也会存在数据冗余、更新异常、插入异常和删除异常的情况,读者可自行分析得知。
把学生关系表分为如下两个表:
学生:(学号, 姓名, 年龄, 所在学院);
学院:(学院, 地点, 电话)。
这样的数据库表是符合第三范式的,消除了数据冗余、更新异常、插入异常和删除异常。
鲍依斯-科得范式(BCNF):在第三范式的基础上,数据库表中如果不存在任何字段对任一候选关键字段的传递函数依赖则符合第三范式。
假设仓库管理关系表为StorehouseManage(仓库ID, 存储物品ID, 管理员ID, 数量),且有一个管理员只在一个仓库工作;一个仓库可以存储多种物品。这个数据库表中存在如下决定关系:
(仓库ID, 存储物品ID) →(管理员ID, 数量)
(管理员ID, 存储物品ID) → (仓库ID, 数量)
所以,(仓库ID, 存储物品ID)和(管理员ID, 存储物品ID)都是StorehouseManage的候选关键字,表中的唯一非关键字段为数量,它是符合第三范式的。但是,由于存在如下决定关系:
(仓库ID) → (管理员ID)
(管理员ID) → (仓库ID)
即存在关键字段决定关键字段的情况,所以其不符合BCNF范式。它会出现如下异常情况:
(1) 删除异常:
当仓库被清空后,所有"存储物品ID"和"数量"信息被删除的同时,"仓库ID"和"管理员ID"信息也被删除了。
(2) 插入异常:
当仓库没有存储任何物品时,无法给仓库分配管理员。
(3) 更新异常:
如果仓库换了管理员,则表中所有行的管理员ID都要修改。
把仓库管理关系表分解为二个关系表:
仓库管理:StorehouseManage(仓库ID, 管理员ID);
仓库:Storehouse(仓库ID, 存储物品ID, 数量)。
这样的数据库表是符合BCNF范式的,消除了删除异常、插入异常和更新异常。
范式应用
我们来逐步搞定一个论坛的数据库,有如下信息:
(1) 用户:用户名,email,主页,电话,联系地址
(2) 帖子:发帖标题,发帖内容,回复标题,回复内容
第一次我们将数据库设计为仅仅存在表:
用户名 email 主页 电话 联系地址 发帖标题 发帖内容 回复标题 回复内容
这个数据库表符合第一范式,但是没有任何一组候选关键字能决定数据库表的整行,唯一的关键字段用户名也不能完全决定整个元组。我们需要增加"发帖ID"、"回复ID"字段,即将表修改为:
用户名 email 主页 电话 联系地址 发帖ID 发帖标题 发帖内容 回复ID 回复标题 回复内容
这样数据表中的关键字(用户名,发帖ID,回复ID)能决定整行:
(用户名,发帖ID,回复ID) → (email,主页,电话,联系地址,发帖标题,发帖内容,回复标题,回复内容)
但是,这样的设计不符合第二范式,因为存在如下决定关系:
(用户名) → (email,主页,电话,联系地址)
(发帖ID) → (发帖标题,发帖内容)
(回复ID) → (回复标题,回复内容)
即非关键字段部分函数依赖于候选关键字段,很明显,这个设计会导致大量的数据冗余和操作异常。
我们将数据库表分解为(带下划线的为关键字):
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:发帖ID,标题,内容
(3) 回复信息:回复ID,标题,内容
(4) 发贴:用户名,发帖ID
(5) 回复:发帖ID,回复ID
这样的设计是满足第1、2、3范式和BCNF范式要求的,但是这样的设计是不是最好的呢?
不一定。
观察可知,第4项"发帖"中的"用户名"和"发帖ID"之间是1:N的关系,因此我们可以把"发帖"合并到第2项的"帖子信息"中;第5项"回复"中的"发帖ID"和"回复ID"之间也是1:N的关系,因此我们可以把"回复"合并到第3项的"回复信息"中。这样可以一定量地减少数据冗余,新的设计为:
(1) 用户信息:用户名,email,主页,电话,联系地址
(2) 帖子信息:用户名,发帖ID,标题,内容
(3) 回复信息:发帖ID,回复ID,标题,内容
数据库表1显然满足所有范式的要求;
数据库表2中存在非关键字段"标题"、"内容"对关键字段"发帖ID"的部分函数依赖,即不满足第二范式的要求,但是这一设计并不会导致数据冗余和操作异常;
数据库表3中也存在非关键字段"标题"、"内容"对关键字段"回复ID"的部分函数依赖,也不满足第二范式的要求,但是与数据库表2相似,这一设计也不会导致数据冗余和操作异常。
由此可以看出,并不一定要强行满足范式的要求,对于1:N关系,当1的一边合并到N的那边后,N的那边就不再满足第二范式了,但是这种设计反而比较好!
对于M:N的关系,不能将M一边或N一边合并到另一边去,这样会导致不符合范式要求,同时导致操作异常和数据冗余。
对于1:1的关系,我们可以将左边的1或者右边的1合并到另一边去,设计导致不符合范式要求,但是并不会导致操作异常和数据冗余。
结论
满足范式要求的数据库设计是结构清晰的,同时可避免数据冗余和操作异常。这并意味着不符合范式要求的设计一定是错误的,在数据库表中存在1:1或1:N关系这种较特殊的情况下,合并导致的不符合范式要求反而是合理的。
在我们设计数据库的时候,一定要时刻考虑范式的要求。
__________________________________________________________________
应该是第二种说法,只听说过1NF,2NF,3NF这么分的,我大学教科书上也这么写的

⑸ 数据挖掘有哪几种方法

1、神经元网络办法


神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。


2、遗传算法


遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。


3、决策树算法办法


决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。


粗集基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。


4、遮盖正例抵触典例办法


它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。


5、数据剖析办法


在数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。


6、含糊集办法


即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。


关于大数据在市场营销方面的优势有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑹ 如何进行大数据处理

大数据处理之一:收集


大数据的收集是指运用多个数据库来接收发自客户端(Web、App或许传感器方式等)的 数据,而且用户能够经过这些数据库来进行简略的查询和处理作业,在大数据的收集进程中,其主要特色和应战是并发数高,因为同时有可能会有成千上万的用户 来进行拜访和操作


大数据处理之二:导入/预处理


虽然收集端本身会有许多数据库,但是假如要对这些海量数据进行有效的剖析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或许分布式存储集群,而且能够在导入基础上做一些简略的清洗和预处理作业。导入与预处理进程的特色和应战主要是导入的数据量大,每秒钟的导入量经常会到达百兆,甚至千兆等级。


大数据处理之三:核算/剖析


核算与剖析主要运用分布式数据库,或许分布式核算集群来对存储于其内的海量数据进行普通 的剖析和分类汇总等,以满足大多数常见的剖析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及根据 Mysql的列式存储Infobright等,而一些批处理,或许根据半结构化数据的需求能够运用Hadoop。 核算与剖析这部分的主要特色和应战是剖析触及的数据量大,其对系统资源,特别是I/O会有极大的占用。


大数据处理之四:发掘


主要是在现有数据上面进行根据各种算法的核算,然后起到预测(Predict)的作用,然后实现一些高等级数据剖析的需求。主要运用的工具有Hadoop的Mahout等。该进程的特色和应战主要是用于发掘的算法很复杂,并 且核算触及的数据量和核算量都很大,常用数据发掘算法都以单线程为主。


关于如何进行大数据处理,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑺ 数据库审计的主要功能

数据库审计作为目前用户接受度最高,使用最为广泛的数据安全产品,如果只是单纯的具有日志记录和审计功能已经不能完全满足用户的需求,其功能必须得到进一步的扩展:
一. 加密协议解析
数据库有时会采用加密协议通讯,为审计解析带来了困难,但这也是数据库审计产品必须解决的问题,否则将无法实现数据库访问完全审计的任务。例如针对SQL Server默认的数据库用户加密或者更深层次的加密协议,都需要数据库审计产品提供相应的解决办法。
二. 复杂环境的数据采集
数据库审计产品除了常规的旁路部署通过交换机镜像数据库访问流量的审计方法外,还应具备适用于复杂网络的数据采集方式,例如在复杂的虚拟化网络环境下,通过“探针”方式捕获数据库流量。但是无论哪种部署方式,都需要在不影响数据库原有性能,无需应用、网络环境改造的前提下,提供可靠的数据库审计服务。
三. 应用关联审计与监控
数据库审计产品除了具备常规的客户端一层的审计信息:客户端IP、数据库用户、主机名、操作系统、用户名等,还应具备应用侧风险行为审计与监控的能力,例如对应用账户、应用IP等关联审计信息。
四. 数据库入侵行为监测
数据库暴露于内外网络,且数据库各版本都有安全漏洞问题,因此数据库审计产品应提供针对数据库漏洞攻击的“检测”功能,并对这些漏洞攻击实时监控、有效记录,发现风险后及时告警,且能够有效追溯风险来源。
五. 数据库异常行为监测
数据库审计产品的主体价值是帮助用户高效的完成风险行为的定责追溯,这需要数据库审计产品针对数据库通讯协议进行完全解析;并具备针对SQL语句的学习、归类形成模板的能力;最终结合会话信息、应用关联信息,实现数据库行为建模。基于访问模型,当数据库访问行为异常时,系统可提供实时的告警能力,降低数据泄露的损失。
六. 数据库违规行为监测
数据库审计产品还应具备针对数据库的违规访问、登录等行为检测告警的能力。例如利用审计到的数据库账号和客户端IP信息,针对指定周期内,同一IP或账号的频次性失败登录行为进行监控并形成告警。
七. 报表展现
数据库审计产品应具备将审计日志进行数据化分析并以个性化报表展示的能力,以便帮助安全管理人员更加便捷、深入的剖析数据库运行风险。例如:综合报表、合规性报表、专项报表、自定义报表等。
安华金和数据库审计产品不但完全具备以上7种能力,还具备更多的且具有用户价值的扩展功能,具体可以咨询他们~

⑻ 怎样选择数据库审计系统

安华金和官网上看的一篇文章,希望对你有帮助。随着数据价值的不断提升,从政策到用户对于数据安全重视程度越来越高,数据库审计产品作为一款部署简单,不用对现有IT架构进行任何改变,又能够满足政策合规需求的产品,希望对在数据库审计产品的选型过程中对您有所帮助。
一、数据库审计产品选型的10大基本能力
如果要满足用户使用数据库审计产品的基本需求,必须满足以下条件:
1、审计记录全和准:保证审计的准确性、全面性、无漏审,实现数据库访问流量的全捕获;
2、高效入库:审计结果快速入库,要在高访问量压力下,审计结果入库无延迟、无丢包;
3、准确的关联审计:高并发情况下,能够审计到数据库操作的应用用户;
4、高效分析:要能够对审计记录进行快速分析与检索,至少实现千万乃至亿级数据秒级响应;
5、高易用性:要符合用户的使用习惯,保障产品的易用性;
6、加密协议解析:随着通讯加密的普及,数据库审计产品必须要能够解析加密的数据库访问流量;
7、数据库入侵行为监测:数据价值的提升,造成了数据库攻击行为更加普遍,审计产品应提供针对数据库漏洞攻击的“检测”功能,并对这些漏洞攻击实时监控、有效记录,发现风险后及时告警,且能够有效追溯风险来源;
8、数据库异常行为监测:数据库访问行为异常时,系统可提供实时的告警能力,降低数据泄露的损失;
9、数据库违规行为监测:数据库审计产品还应具备针对数据库的违规访问、登录等行为检测告警的能力;
10、报表展现:数据库审计产品应具备将审计日志进行数据化分析并以个性化报表展示的能力,以便帮助安全管理人员更加便捷、深入的剖析数据库运行风险。例如:综合报表、合规性报表、专项报表、自定义报表等。
二、做标王,数据库审计还需要哪些更过硬实力
在具备了数据库审计产品的基本功能之外,一款好的数据库审计产品还应能够做到以下四点:
1、全面的审计元素:包括,表、函数、包、存储过程、视图、数据库登陆用户、客户端ip、端口、MAC、客户端操作系统、用户名、客户端工具、影响行数、结果集、执行时间、操作类型、长语句、大对象、mysql压缩协议、dblink、imp、exp、prepare参数等,这样才能保证审计结果的全面性;
2、精确SQL语句解析:采用句柄追踪\参数绑定追踪和基于词法和语法的精确SQL解析技术,可以实现在长SQL语句、高并发访问量时不丢包;在多SQL语句情况下,准确记录数据库语句是否执行成功;对于prepare语句,准确将参数值与原始语句和绑定变量关联;对SQL执行结果集进行准确追踪,从而准确记录SQL语句的影响行数,从而保证数据库审计结果的准确性;
3、应用审计视角下的4层应用框架结构:具备4级应用框架结构——应用请求、应用行为、应用模块、应用:
应用请求:访问源对某个指定的URL发起访问请求的流水记录;
应用行为:针对某类相同和相似的应用请求,去除参数化的URL模板(类似于SQL语句模板概念);
应用模块:多个应用行为的组合,归属于一组功能模块的集合,对应应用服务器的功能菜单;
应用:以应用服务器IP+应用服务器端口+应用工程名定义的一个应用系统。
这种4级应用框架结构,可以有效保证数据库审计产品的应用关联准确性,从而提供完整的基于应用访问视角的综合性统计数据呈现和正向追溯能力,以及多角度的审计结果分析能力。
4、完整的风险匹配规则与多样化的告警方式:基于横向的黑白名单匹配规则以及黑白名单SQL语句,以及纵向的高中低等风险等级设置,实现准确的数据库访问风险行为匹配。snmp、syslog、短信、邮件等多样性的告警方式,保证数据库风险行为的实时告警,从而实现全面风险发现与及时告警。
这是我在安华金和官网上看到的一篇文章,觉得不错,推荐给你,他们家就有数据库审计产品,不明白的也可以再网络下。

⑼ 大数据分析技术有哪些

1、数据收集


对于任何的数据剖析来说,首要的就是数据收集,因而大数据剖析软件的第一个技能就是数据收集的技能,该东西能够将分布在互联网上的数据,一些移动客户端中的数据进行快速而又广泛的收集,一起它还能够敏捷的将一些其他的平台中的数据源中的数据导入到该东西中,对数据进行清洗、转化、集成等,然后构成在该东西的数据库中或者是数据集市傍边,为联络剖析处理和数据挖掘提供了根底。


2、数据存取


数据在收集之后,大数据剖析的另一个技能数据存取将会继续发挥作用,能够联系数据库,方便用户在运用中贮存原始性的数据,而且快速的收集和运用,再有就是根底性的架构,比如说运贮存和分布式的文件贮存等,都是比较常见的一种。


3、数据处理


数据处理能够说是该软件具有的最中心的技能之一,面对庞大而又杂乱的数据,该东西能够运用一些计算方法或者是计算的方法等对数据进行处理,包括对它的计算、归纳、分类等,然后能够让用户深度的了解到数据所具有的深度价值。


4、计算剖析


计算剖析则是该软件所具有的另一个中心功能,比如说假设性的查验等,能够帮助用户剖析出现某一种数据现象的原因是什么,差异剖析则能够比较出企业的产品销售在不同的时刻和区域中所显示出来的巨大差异,以便未来更合理的在时刻和地域中进行布局。


5、相关性剖析


某一种数据现象和别的一种数据现象之间存在怎样的联系,大数据剖析通过数据的增加减少改变等都能够剖析出二者之间的联系,此外,聚类剖析以及主成分剖析和对应剖析等都是常用的技能,这些技能的运用会让数据开发更接近人们的应用方针。

热点内容
全键盘编程键盘 发布:2025-01-16 01:38:59 浏览:421
尾货棉服直播间脚本 发布:2025-01-16 01:21:45 浏览:227
vb编程步骤 发布:2025-01-16 01:11:58 浏览:201
bb霜解压 发布:2025-01-16 01:11:11 浏览:596
编程怼人 发布:2025-01-16 00:53:08 浏览:760
建立共享服务器地址 发布:2025-01-16 00:26:40 浏览:565
android开机动画修改 发布:2025-01-16 00:26:26 浏览:872
怎么解压pc版游戏 发布:2025-01-16 00:16:32 浏览:122
v9更新到91有方舟编译器吗 发布:2025-01-16 00:11:49 浏览:500
AB系统编程 发布:2025-01-16 00:09:37 浏览:621