图像压缩算法c
首先你需要了解几个概念,有损压缩,量化,行程编码。
对一副图片来说,bitmap就是原始格式,没经过任何压缩的。
量化就是把所有0-255的像素值进行归类,然后分成尽量少的积累,这要存储量就小很多了,对于JEPG来说量化是有损压缩的起源。
最后就是对所有的已经归类过的点进行行程编码,然后就压缩完了
Ⅱ jpeg2000图像压缩算法有没有现成的C语言库函数
有现成的库.
http://www.openjpeg.org/index.php?menu=download
Ⅲ C语言实现把一个JPG图片分解为两个图片,急!!谢谢
麻烦。。无聊。。
先找着jpg文件头格式。。
C打开文件。。找到数据部分。。
新建文件。。写入。。保存。。
综上所述:无聊+麻烦。
Ⅳ 怎么压缩图片的大小
用这个在线图片压缩工具,想把图片文件的大小减到多少都行,比如你直接设置一下压缩数值到600kb,马上瞬间就能把图片的文件大小压缩到600kb搞定,你设定压缩到多少kb,他压缩完输出的图片就是多少kb,方便得很。在线智能压缩图片大小,图片压缩体积
在线图片智能压缩使用步骤:
一、首先点击加号添加需要压缩的图片。目前已知支持对jpg、png等多种常见的图片格式进行压缩,如果上传图片并压缩成功,则代表支持该图片格式。
二、可以自行修改图片需要被压缩到的最大宽高尺寸,默认为图片原始的宽高尺寸,且宽高比例是自动锁定的。
三、必须设置图片被压缩后,期望输出的图片文件的最大占用空间。(必填项)
四、选择图片生成的算法。默认为混合优先算法,绝大多数情况下使用默认算法即可。
五、压缩的设定值不能小于1Kb,但图片压缩的最终效果可以小于1Kb。
butterpig
Ⅳ 数据图像处理CPSNR是什么
基于对Bayer格式图像特性的研究,提出一种Bayer格式图像的准无损压缩算法,本算法分为颜色空间转换、低通滤波处理、图像压缩、解压缩和重构五个步骤。运用CPSNR方法对本算法的性能进行评价,实验结果表明,这种算法滤波单元、重构单元结构简单,而且恢复后的图像效果较好,这非常有利与传输高质量的图像和视频画面。
Ⅵ jpeg图片压缩的原理(谈谈怎么个压缩法怎么个有损法)
JPEG压缩过程
JPEG压缩分四个步骤实现:
1.颜色模式转换及采样;
2.DCT变换;
3.量化;
4.编码。
二.
1.颜色模式转换及采样 RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。 Y=0.2990R+0.5870G+0.1140B Cb=-0.1687R-0.3313G+0.5000B+128 Cr=0.5000R-0.4187G-0.0813B+128 人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的数据取样比例。
2.DCT变换 DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。 压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内容如下:
JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。 当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT转换公式所接受的数字范围是在-128到+127之间。 DCT变换公式:
x,y代表图像数据矩阵内某个数值的坐标位置f(x,y)代表图像数据矩阵内的数个数值u,v代表DCT变换后矩阵内某个数值的坐标位置F(u,v)代表DCT变换后矩阵内的某个数值 u=0 且 v=0 c(u)c(v)=1/1.414 u>0 或 v>0 c(u)c(v)=1 经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称之为AC。
3、量化 图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,即完成量化。 当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失了一些数据内容,JPEG提供的量化表如下:
4、编码 Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常是以完整的MCU来进行的。 编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才能顺利地完成JPEG编码工作。 DC编码 DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如果差值为-5,则先改为正整数5,再将其二进制转换成1的补数即可。所谓1的补数,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数为3,下表即列出差值所应保留的Bit数与差值内容的对照。
在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫曼码值,完成DC的编码工作。
AC编码 AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排序,即按照下图箭头所指示的顺序串联起来。
63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。 如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适当的霍夫曼码值,再与AC值相连即可。 例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的前面有5个零。 由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相关书籍。 实现上述四个步骤,即完成一幅图像的JPEG压缩。 参考资料[1] 林福宗 《图像文件格式(上)——Windows 编程》,清华大学出版社, 1996年[2] 李振辉、李仁各编着,《探索图像文件的奥秘》,清华大学出版社,1996年[3] 黎洪松、成实译《JPEG静止数据压缩标准》,学苑出版社,1996年
希望有点帮助
参考资料:http://www.daima.com.cn/Info/94/Info31445/
Ⅶ 我想用C编程把一张BMP格式的图片转换成jpg格式的,就是图像处理中的压缩,但是我不会,求教
我没做过转化jpg的,jpg应该是最复杂的了
我觉得首先得知道这两种文件个格式,文件头结构体那部分,然后就是jpg的压缩算法
这个英文的 维基网络应该查的到, 数字图像处理汉语资料相对少一些
Ⅷ 现今的图像压缩算法有哪些急...
浅谈图像压缩算法
余科亮
本文仅讨论静止图像的压缩基本算法,图像压缩的目的在于以较少的数据来
表示图像以节约存储费用,或者传输时间和费用。
JPEG压缩算法可以用失真的压缩方式来处理图像,但失真的程度却是肉眼所
无法辩认的。这也就是为什么JPEG会有如此满意的压缩比例的原因。
下面主要讨论,JPEG基本压缩法。
一.JPEG压缩过程
JPEG压缩分四个步骤实现:
1.颜色模式转换及采样;
2.DCT变换;
3.量化;
4.编码。
二.1.颜色模式转换及采样
RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。
想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为
YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算
公式可完成数据转换。
Y=0.2990R+0.5870G+0.1140B
Cb=-0.1687R-0.3313G+0.5000B+128
Cr=0.5000R-0.4187G-0.0813B+128
人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类
的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较
重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处
理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代
表的意义是Y、Cb和Cr三个成份的数据取样比例。
2.DCT变换
DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组
光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,
再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容
易辨认出来。
压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内
容如下:
JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作
MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:
2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。
当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入
DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT
转换公式所接受的数字范围是在-128到+127之间。
DCT变换公式:
x,y代表图像数据矩阵内某个数值的坐标位置
f(x,y)代表图像数据矩阵内的数个数值
u,v代表DCT变换后矩阵内某个数值的坐标位置
F(u,v)代表DCT变换后矩阵内的某个数值
u=0 且 v=0 c(u)c(v)=1/1.414
u>0 或 v>0 c(u)c(v)=1
经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最
大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称
之为AC。
3、量化
图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。
量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是
针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,
即完成量化。
当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最
后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失
了一些数据内容,JPEG提供的量化表如下:
4、编码
Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常
是以完整的MCU来进行的。
编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码
表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才
能顺利地完成JPEG编码工作。
DC编码
DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取
得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于
在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比
对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如
果差值为-5,则先改为正整数5,再将其二进制转换成1的补数即可。所谓1的补
数,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数
为3,下表即列出差值所应保留的Bit数与差值内容的对照。
在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位
数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分
别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫
曼码值,完成DC的编码工作。
AC编码
AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排
序,即按照下图箭头所指示的顺序串联起来。
63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,
RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系
数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。
如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL
(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所
剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适
当的霍夫曼码值,再与AC值相连即可。
例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC
的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)
即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的
前面有5个零。
由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相
关书籍。
实现上述四个步骤,即完成一幅图像的JPEG压缩。
参考资料
[1] 林福宗 《图像文件格式(上)——Windows 编程》,清华大学出版社,
1996年
[2] 李振辉、李仁各编着,《探索图像文件的奥秘》,清华大学出版社,1996年
[3] 黎洪松、成实译《JPEG静止数据压缩标准》,学苑出版社,1996年
Ⅸ 数字图像的无损压缩是指
答案是A,解压后重建的图像与原始图像完全相同。
虽然不能完全恢复原始数据,但是所损失的部分对理解原始图像的影响缩小,却换来了大得多的压缩比,即指使用压缩后的数据进行重构,重构后的数据与原来的数据有所不同,但不影响人对原始资料表达的信息造成误解。有损压缩适用于重构信号不一定非要和原始信号完全相同的场合。
图像和声音的压缩(因为其中包含的数据往往多于我们的视觉系统和听党系统所能接收的信息,丢掉一些数据而不至于对声音或者图像所表达的意思产生误解但可大大提高压缩比)。有损压缩广泛应用于语音,图像和视频数据的压缩。
2、无损压缩格式则是利用数据的统计冗余进行压缩,可完全恢复原始数据而不引起任何失真,但压缩率是受到数据统计冗余度的理论限制,一般为2:1到5:1。
这类方法广泛用于文本数据,程序和特殊应用场合的图像数据(如指纹图像,医学图像等)的压缩。即指使用压缩后的数据进行重构(或者叫做还原,解压缩),重构后的数据与原来的数据完全相同;无损压缩用于要求重构的信号与原始信号完全致的场合。
Ⅹ 求JPEG格式的详细介绍。以及JPEG图像DC系数提取的C语言实现代码
JPEG格式
JPEG也是常见的一种图像格式,它由联合照片专家组(Joint Photographic Experts Group)开发并以命名为%26quot;ISO 10918-1%26quot;,JPEG仅仅是一种俗称而已。JPEG文件的扩展名为.jpg或.jpeg,其压缩技术十分先进,它用有损压缩方式去除冗余的图像和彩色数据,获取得极高的压缩率的同时能展现十分丰富生动的图像,换句话说,就是可以用最少的磁盘空间得到较好的图像质量。
同时JPEG还是一种很灵活的格式,具有调节图像质量的功能,允许你用不同的压缩比例对这种文件压缩,比如我们最高可以把1.37MB的BMP位图文件压缩至20.3KB。当然我们完全可以在图像质量和文件尺寸之间找到平衡点。
由于JPEG优异的品质和杰出的表现,它的应用也非常广泛,特别是在网络和光盘读物上,肯定都能找到它的影子。目前各类浏览器均支持JPEG这种图像格式,因为JPEG格式的文件尺寸较小,下载速度快,使得Web页有可能以较短的下载时间提供大量美观的图像,JPEG同时也就顺理成章地成为网络上最受欢迎的图像格式。
四、JPEG2000格式
JPEG 2000同样是由JPEG 组织负责制定的,它有一个正式名称叫做%26quot;ISO 15444%26quot;,与JPEG相比,它具备更高压缩率以及更多新功能的新一代静态影像压缩技术。
JPEG2000 作为JPEG的升级版,其压缩率比JPEG高约30%左右。与JPEG不同的是,JPEG2000 同时支持有损和无损压缩,而 JPEG 只能支持有损压缩。无损压缩对保存一些重要图片是十分有用的。JPEG2000的一个极其重要的特征在于它能实现渐进传输,这一点与GIF的%26quot;渐显%26quot;有异曲同工之妙,即先传输图像的轮廓,然后逐步传输数据,不断提高图像质量,让图象由朦胧到清晰显示,而不必是像现在的 JPEG 一样,由上到下慢慢显示。
此外,JPEG2000还支持所谓的%26quot;感兴趣区域%26quot;特性,你可以任意指定影像上你感兴趣区域的压缩质量,还可以选择指定的部份先解压缩。 JPEG 2000 和 JPEG 相比优势明显,且向下兼容,因此取代传统的JPEG格式指日可待。
JPEG2000可应用于传统的JPEG市场,如扫描仪、数码相机等,亦可应用于新兴领域,如网路传输、无线通讯等等。
-------
JPEG(Joint Photographic Experts Group) 是一个由 ISO和IEC两个组织机构联合组成的一个专家组,负责制定静态的数字图像数据压缩编码标准,这个专家组开发的算法称为JPEG算法,并且成为国际上通用的标准,因此又称为JPEG标准。JPEG是一个适用范围很广的静态图像数据压缩标准,既可用于灰度图像又可用于彩色图像。
JPEG专家组开发了两种基本的压缩算法,一种是采用以离散余弦变换(Discrete Cosine Transform,DCT)为基础的有损压缩算法,另一种是采用以预测技术为基础的无损压缩算法。使用有损压缩算法时,在压缩比为25:1的情况下,压缩后还原得到的图像与原始图像相比较,非图像专家难于找出它们之间的区别,因此得到了广泛的应用。例如,在V-CD和DVD-Video电视图像压缩技术中,就使用JPEG的有损压缩算法来取消空间方向上的冗余数据。为了在保证图像质量的前提下进一步提高压缩比,近年来JPEG专家组正在制定JPEG 2000(简称JP 2000)标准,这个标准中将采用小波变换(wavelet)算法。
JPEG压缩是有损压缩,它利用了人的视角系统的特性,使用量化和无损压缩编码相结合来去掉视角的冗余信息和数据本身的冗余信息。压缩编码大致分成三个步骤:
1.使用正向离散余弦变换(forward discrete cosine transform,FDCT)把空间域表示的图变换成频率域表示的图。
2.使用加权函数对DCT系数进行量化,这个加权函数对于人的视觉系统是最佳的。
3.使用霍夫曼可变字长编码器对量化系数进行编码。
译码或者叫做解压缩的过程与压缩编码过程正好相反。
JPEG算法与彩色空间无关,因此“RGB到YUV变换”和“YUV到RGB变换”不包含在JPEG算法中。JPEG算法处理的彩色图像是单独的彩色分量图像,因此它可以压缩来自不同彩色空间的数据,如RGB, YCbCr和CMYK。
JPEG压缩编码算法的主要计算步骤如下:
1.正向离散余弦变换(FDCT)。
2.量化(quantization)。
3.Z字形编码(zigzag scan)。
4.使用差分脉冲编码调制(differential pulse code molation,DPCM)对直流系数(DC)进行编码。
5.使用行程长度编码(run-length encoding,RLE)对交流系数(AC)进行编码。
6.熵编码(entropy coding)。
2. 量化
量化是对经过FDCT变换后的频率系数进行量化。量化的目的是减小非“0”系数的幅度以及增加“0”值系数的数目。量化是图像质量下降的最主要原因。
对于有损压缩算法,JPEG算法使用均匀量化器进行量化,量化步距是按照系数所在的位置和每种颜色分量的色调值来确定。因为人眼对亮度信号比对色差信号更敏感,因此使用了两种量化表:亮度量化值和色差量化值。此外,由于人眼对低频分量的图像比对高频分量的图像更敏感,因此图中的左上角的量化步距要比右下角的量化步距小。
3. Z字形编排
量化后的系数要重新编排,目的是为了增加连续的“0”系数的个数,就是“0”的游程长度,方法是按照Z字形的式样编排,如图5-17所示。这样就把一个8 ? 8的矩阵变成一个1 ? 64的矢量,频率较低的系数放在矢量的顶部。
4. 直流系数的编码
8 ? 8图像块经过DCT变换之后得到的DC直流系数有两个特点,一是系数的数值比较大,二是相邻8 ? 8图像块的DC系数值变化不大。根据这个特点,JPEG算法使用了差分脉冲调制编码(DPCM)技术,对相邻图像块之间量化DC系数的差值(Delta)进行编码,
Delta=DC(0, 0)k-DC(0, 0)k-1 ........ (5-5)
5. 交流系数的编码
量化AC系数的特点是1 ? 64矢量中包含有许多“0”系数,并且许多“0”是连续的,因此使用非常简单和直观的游程长度编码(RLE)对它们进行编码。
JPEG使用了1个字节的高4位来表示连续“0”的个数,而使用它的低4位来表示编码下一个非“0”系数所需要的位数,跟在它后面的是量化AC系数的数值。
6. 熵编码
使用熵编码还可以对DPCM编码后的直流DC系数和RLE编码后的交流AC系数作进一步的压缩。
在JPEG有损压缩算法中,使用霍夫曼编码器来减少熵。使用霍夫曼编码器的理由是可以使用很简单的查表(lookup table)方法进行编码。压缩数据符号时,霍夫曼编码器对出现频度比较高的符号分配比较短的代码,而对出现频度较低的符号分配比较长的代码。这种可变长度的霍夫曼码表可以事先进行定义。