遗传算法收敛
❶ 如何让遗传算法解旅行商问题快速收敛
想要快速收敛的话可以直接减小每一步的半径,但是更容易被局部峰值困住,可以通过选取几个差距较大的初始点多次运行来提高精确度。
最根本的解决方法还是提高计算适应度等步骤的效率。
❷ 遗传算法的优缺点
1、早熟。这是最大的缺点,即算法对新空间的探索能力是有限的,也容易收敛到局部最优解。
2、大量计算。涉及到大量个体的计算,当问题复杂时,计算时间是个问题。
3、处理规模小。目前对于维数较高的问题,还是很难处理和优化的。
4、难于处理非线性约束。对非线性约束的处理,大部分算法都是添加惩罚因子,这是一笔不小的开支。
5、稳定性差。因为算法属于随机类算法,需要多次运算,结果的可靠性差,不能稳定的得到解。
大致这些,lz可查阅相关专业书籍!
❸ 遗传算法的优缺点
优点:
1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。
另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。
2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。
3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。
另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。
4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。
5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。
缺点:
1、遗传算法在进行编码时容易出现不规范不准确的问题。
2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。
3、遗传算法效率通常低于其他传统的优化方法。
4、遗传算法容易出现过早收敛的问题。
(3)遗传算法收敛扩展阅读
遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。
函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。
为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。
❹ 遗传算法的收敛性问题
是算子有问题,交叉的方法都是比较简单的,但对于某些情况可能并不好用,也就是说算法本身无法体现出优胜劣汰的规则,可能因此导致无法收敛。
收敛数列令为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b,则数列存在极限A,数列被称为收敛。非收敛的数列被称作“发散”(divergence)数列。
可见收敛不是指数值越来越小,而是指与极限值的距离(即差的绝对值)越来越小,只要你的目标函数是压缩映射,那么使用遗传算法就一定可以计算出全局收敛的近似值。
(4)遗传算法收敛扩展阅读:
由于遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。
遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值。由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。
❺ 遗传算法的基本原理
遗传算法的基本原理和方法
一、编码
编码:把一个问题的可行解从其解空间转换到遗传算法的搜索空间的转换方法。
解码(译码):遗传算法解空间向问题空间的转换。
二进制编码的缺点是汉明悬崖(Hamming Cliff),就是在某些相邻整数的二进制代码之间有很大的汉明距离,使得遗传算法的交叉和突变都难以跨越。
格雷码(Gray Code):在相邻整数之间汉明距离都为1。
(较好)有意义的积木块编码规则:所定编码应当易于生成与所求问题相关的短距和低阶的积木块;最小字符集编码规则,所定编码应采用最小字符集以使问题得到自然的表示或描述。
二进制编码比十进制编码搜索能力强,但不能保持群体稳定性。
动态参数编码(Dynamic Paremeter Coding):为了得到很高的精度,让遗传算法从很粗糙的精度开始收敛,当遗传算法找到一个区域后,就将搜索现在在这个区域,重新编码,重新启动,重复这一过程,直到达到要求的精度为止。
编码方法:
1、 二进制编码方法
缺点:存在着连续函数离散化时的映射误差。不能直接反映出所求问题的本身结构特征,不便于开发针对问题的专门知识的遗传运算算子,很难满足积木块编码原则
2、 格雷码编码:连续的两个整数所对应的编码之间仅仅只有一个码位是不同的,其余码位都相同。
3、 浮点数编码方法:个体的每个基因值用某一范围内的某个浮点数来表示,个体的编码长度等于其决策变量的位数。
4、 各参数级联编码:对含有多个变量的个体进行编码的方法。通常将各个参数分别以某种编码方法进行编码,然后再将他们的编码按照一定顺序连接在一起就组成了表示全部参数的个体编码。
5、 多参数交叉编码:将各个参数中起主要作用的码位集中在一起,这样它们就不易于被遗传算子破坏掉。
评估编码的三个规范:完备性、健全性、非冗余性。
二、选择
遗传算法中的选择操作就是用来确定如何从父代群体中按某种方法选取那些个体遗传到下一代群体中的一种遗传运算,用来确定重组或交叉个体,以及被选个体将产生多少个子代个体。
常用的选择算子:
1、 轮盘赌选择(Roulette Wheel Selection):是一种回放式随机采样方法。每个个体进入下一代的概率等于它的适应度值与整个种群中个体适应度值和的比例。选择误差较大。
2、 随机竞争选择(Stochastic Tournament):每次按轮盘赌选择一对个体,然后让这两个个体进行竞争,适应度高的被选中,如此反复,直到选满为止。
3、 最佳保留选择:首先按轮盘赌选择方法执行遗传算法的选择操作,然后将当前群体中适应度最高的个体结构完整地复制到下一代群体中。
4、 无回放随机选择(也叫期望值选择Excepted Value Selection):根据每个个体在下一代群体中的生存期望来进行随机选择运算。方法如下
(1) 计算群体中每个个体在下一代群体中的生存期望数目N。
(2) 若某一个体被选中参与交叉运算,则它在下一代中的生存期望数目减去0.5,若某一个体未被选中参与交叉运算,则它在下一代中的生存期望数目减去1.0。
(3) 随着选择过程的进行,若某一个体的生存期望数目小于0时,则该个体就不再有机会被选中。
5、 确定式选择:按照一种确定的方式来进行选择操作。具体操作过程如下:
(1) 计算群体中各个个体在下一代群体中的期望生存数目N。
(2) 用N的整数部分确定各个对应个体在下一代群体中的生存数目。
(3) 用N的小数部分对个体进行降序排列,顺序取前M个个体加入到下一代群体中。至此可完全确定出下一代群体中M个个体。
6、无回放余数随机选择:可确保适应度比平均适应度大的一些个体能够被遗传到下一代群体中,因而选择误差比较小。
7、均匀排序:对群体中的所有个体按期适应度大小进行排序,基于这个排序来分配各个个体被选中的概率。
8、最佳保存策略:当前群体中适应度最高的个体不参与交叉运算和变异运算,而是用它来代替掉本代群体中经过交叉、变异等操作后所产生的适应度最低的个体。
9、随机联赛选择:每次选取几个个体中适应度最高的一个个体遗传到下一代群体中。
10、排挤选择:新生成的子代将代替或排挤相似的旧父代个体,提高群体的多样性。
三、交叉
遗传算法的交叉操作,是指对两个相互配对的染色体按某种方式相互交换其部分基因,从而形成两个新的个体。
适用于二进制编码个体或浮点数编码个体的交叉算子:
1、单点交叉(One-pointCrossover):指在个体编码串中只随机设置一个交叉点,然后再该点相互交换两个配对个体的部分染色体。
2、两点交叉与多点交叉:
(1) 两点交叉(Two-pointCrossover):在个体编码串中随机设置了两个交叉点,然后再进行部分基因交换。
(2) 多点交叉(Multi-pointCrossover)
3、均匀交叉(也称一致交叉,UniformCrossover):两个配对个体的每个基因座上的基因都以相同的交叉概率进行交换,从而形成两个新个体。
4、算术交叉(ArithmeticCrossover):由两个个体的线性组合而产生出两个新的个体。该操作对象一般是由浮点数编码表示的个体。
四、变异
遗传算法中的变异运算,是指将个体染色体编码串中的某些基因座上的基因值用该基因座上的其它等位基因来替换,从而形成以给新的个体。
以下变异算子适用于二进制编码和浮点数编码的个体:
1、基本位变异(SimpleMutation):对个体编码串中以变异概率、随机指定的某一位或某几位仅因座上的值做变异运算。
2、均匀变异(UniformMutation):分别用符合某一范围内均匀分布的随机数,以某一较小的概率来替换个体编码串中各个基因座上的原有基因值。(特别适用于在算法的初级运行阶段)
3、边界变异(BoundaryMutation):随机的取基因座上的两个对应边界基因值之一去替代原有基因值。特别适用于最优点位于或接近于可行解的边界时的一类问题。
4、非均匀变异:对原有的基因值做一随机扰动,以扰动后的结果作为变异后的新基因值。对每个基因座都以相同的概率进行变异运算之后,相当于整个解向量在解空间中作了一次轻微的变动。
5、高斯近似变异:进行变异操作时用符号均值为P的平均值,方差为P2的正态分布的一个随机数来替换原有的基因值。
❻ 遗传算法全局收敛能力和全局寻优能力一样还是不一样
收敛能力是指的从一个初始条件出发,经过一系列迭代之后,最终能否收敛到最优解;全局寻优能力实际上指算法的“搜索”能力。
一个优化收敛能力差,意味着有时候他的求解不一定收敛(正常情况下,经过一些步的迭代后,最好解会很稳定)
寻优能力差意味着在很多初始条件下,算法找不到系统最优解或近似最优解。
❼ 遗传算法有收敛性分析吗有的话怎么分析呢
神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。 1.遗传算法在网络学习中的应用 在神经网络中,遗传算法可用于网络的学习。这时,它在...
❽ 基本遗传算法和改进的遗传算法以概率多少收敛
这个没有确定的数值,对不同的问题概率也不一样,只能定性地说“以接近于1的概率全局收敛”。
❾ 遗传算法为什么会早熟收敛
变异程度设置太小
参考函数里的极值概念
你在一段连续函数里寻找最大的一个值,如果你搜索的范围越小,你所找到的最大值是整段函数的最大值的可能性就越小
遗传算法跟搜索算法其实差不多意思 你变异越少 等于你搜索范围越小 局限在某个集合之内 这就叫早熟收敛
❿ 请教各位,matlab遗传算法运行结果分析,收敛吗
同楼上,采取最优保存策略,也就是每次迭代的最优个体保存好,不随便进行交叉、变异操作,即便进行这些操作,也只在产生的新个体比原个体更优秀时才替换原个体。
当然,即便这样还会造成不收敛,即每次迭代的最有结果都一样,不往好的方向进化,那么这时候就要查看下选择算子、交叉操作、变异操作有没有问题了。