当前位置:首页 » 操作系统 » 数据库的查询优化

数据库的查询优化

发布时间: 2022-08-08 10:43:14

① 如何优化数据库中数据的查询

1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。优化器将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
3.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
4.in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE ‘%L%’
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT * FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。
6.必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为sql只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT * FROM T1 WHERE F1/2=100
应改为:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
8.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11.很多时候用 exists是一个好的选择:
elect num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

② 如何进行数据库查询优化

建索引,用索引,优化索引,重要的事说三遍,另外可以用(EXPLAIN sql语句)查看执行语句是否使用索引

③ 怎样改进数据库的查询性能

1、使你的数据库结构规范化,但是不要求一定达到第三范式,为了显示和打印目的可以有数据冗余2、评估你的系统中对性能影响的关键处,减少被频繁访问的核心表的数量,并在这些核心
表上重点优化索引,表结构(尽量紧凑)。典型的核心表是代码表。
3、对于统计类应用,如果可能应写成触发器和存储过程,这样就有可能把一个消耗大量时
间的统计运算分布到每INSERT,DELETE,或者UPDATE来处理,从而极大提高查询类操作的速度。
查询选择群居索引最有效。其他索引也要针对业务进行选择。由于维护索引也要消耗系
统资源和时间,所以过多的索引对性能是损害甚至是毫无效果的。
5、如果可能,可以利用大数据库对SQL的一些特殊规定来进一步优化,比如查询暗示。
6、适当选择硬件,综合考虑CPU,内存,I/O系统的性能,以当前的CPU,内存配置来看,
很多数据库系统的瓶颈出在I/O系统上。所以如果有可能,最好使用RAID。
当然如果你有足够的财力,可以买更好的服务器,或者搞服务器集群就更利害啦。
7、可能的话,尽量使用存储过程,因为存储过程的执行计划可以重复使用,而且不需要
象普通由CLIENT提交的SQL那样进行处理和编译。
8、检查你的应用程序设计,如果有可能,尽量减少查询次数和在网络上往返的数据。为了
获取少量字段而写SELECT * 对性能的损害也比较利害。
9、在应用程序中协调并发和一致性之间的矛盾。并不是所有业务都需要放在事务中。大量
业务是允许脏读的,在不关键事务中使用脏读,或者读提交,可以大大降低DEADLOCK和
进程之间彼此等待的机会,从而把由于互相锁定资源引起的等待降低到最小。
不要在事务执行中进行大量计算或者与用户交互的操作,因为事务的执行在要求上是
不允许被打断的原子操作(回滚是失败的),所以事务应该多而短小。长事务会锁住
很多资源比较长的时间,因此也比较容易导致其他进程对资源的等待和死锁的机会。
10、评估你开发系统的关键业务,在很多数据库系统对性能的要求是彼此矛盾的,比如OLTP
应用和DSS是不同的。DSS倾向于使用各种索引加快检索速度,而大量的索引对OLTP则是负担。
11、不要在应用程序中写怪异的SQL 查询,比如 WHERE money!40000,这样的语句,这种
SQL查询,数据库的SQL优化器是无法进行优化的。
12、定期维护和管理你的数据库系统,压缩掉那些垃圾空间,很多数据库系统执行类似
删除,事务等操作的时候,并不回收无用的物理空间。所以,制定一份合理的数据库
维护计划,不要等日志文件或者LOG文件越长越大的时候才去整理数据库。
还有很多很多要注意的东西,。。。。。。

④ 怎么提高数据库查询效率

提高查询效率首先要想到的就是加索引,那什么是索引呢?
MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。
打个比方,如果合理的设计且使用索引的MySQL是一辆兰博基尼的话,那么没有设计和使用索引的MySQL就是一个人力三轮车。
索引分单列索引和组合索引。单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引。组合索引,即一个索引包含多个列。
创建索引时,你需要确保该索引是应用在 SQL 查询语句的条件(一般作为 WHERE 子句的条件)。
实际上,索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录。
上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。
建立索引会占用磁盘空间的索引文件。
如何使用索引呢?
首先索引有窄索引和宽索引两个概念,窄索引是指索引的列数为1~2,宽索引就是说索引的列数大于2。
因为窄索引的效率要高于宽索引,所以能用窄索引就不要使用宽索引。
那么对单字段索引和复合索引应该如何使用?
目录
单字段索引的情况:
复合索引的优势:
两者的比较:
单字段索引的情况:
1.表的主键,外键必须有索引
2.数据量超过300的表应该有索引
3.经常与其他表进行连接的表,在连接字段上应该建立索引
4.经常出现在where字句中的字段,特点是大表的字段,应该建立索引
5.索引应该建在选择性高的字段上
6.索引应该建在小字段上,对于大的文本字段甚至超长字段,不要建立索引
7.尽量用单字段索引代替复合索引,复合索引的建立需要仔细的斟酌
复合索引的优势:
1.单字段索引很少甚至没有
2.复合索引的几个字段经常同时以AND的方式出现在where语句
当where语句中的条件是OR时,索引不起作用。
两者的比较:
以一个sql语句来举例:SELECT * FROM STUDENT WHERE SEX="男" AND SAGE=18;
若在sex 和 sage 两个字段分别创建了单字段索引,mysql查询每次只能使用一个索引,虽然对于未添加索引时使用全盘扫描,我们的效率提升了很多,但如果在sex 和 sage两个字段添加复合索引,效率会跟高,如: 创建(sex, age,teacher)的复合索引,那么其实相当于创建了(area,age,teacher)、(area,age)、(area)三个索引,这被称为最佳左前缀特性。
那对于两者优缺点的比较:
1.对于具有2个用and连接条件的语句,且2个列之间的关联度较低的情况下,复合索引有一定优势。
2.对于具有2个用and连接条件的语句,且2个列之间的关联度较高的情况下,复合索引有很大优势。
3.对于具有2个用or连接条件的语句,单索引有一定优势,因为这种情况下复合索引将会导致全表扫描,而前者可以用到indexmerge的优化。
以上就是如何提高查询效率的全部内容,如果有帮助到你的话记得点个关注哟

⑤ 数据库中查询优化的目的是什么

MRR 是 MySQL 针对特定查询的一种优化手段。假设一个查询有二级索引可用,读完二级索引后要回表才能查到那些不在当前二级索引上的列值,由于二级索引上引用的主键值不一定是有序的,因此就有可能造成大量的随机 IO,如果回表前把主键值给它排一下序,那么在回表的时候就可以用顺序 IO 取代原本的随机 IO。
如果想关闭 MRR 优化的话,就要把优化器开关 mrr 设置为 off。
默认只有在优化器认为 MRR 可以带来优化的情况下才会走 MRR,如果你想不管什么时候能走 MRR 的都走 MRR 的话,你要把 mrr_cost_based 设置为 off,不过最好不要这么干,因为这确实是一个坑,MRR 不一定什么时候都好,全表扫描有时候会更加快,如果在这种场景下走 MRR 就完成了。
MRR 要把主键排个序,这样之后对磁盘的操作就是由顺序读代替之前的随机读。从资源的使用情况上来看就是让 CPU 和内存多做点事,来换磁盘的顺序读。然而排序是需要内存的,这块内存的大小就由参数 read_rnd_buffer_size 来控制。

⑥ 数据库查询有哪些优化方面

1 SQL查询语句的重写,对于一个查询可以用多种查询语句实现,但不同查询语句的数据库执行计划是不同的,一旦不能够使用索引或造成较大的内存占用会导致性能下降,因此需要对查询语句进行重写优化,最典型的例子就是not in语句使用外连接方式实现来进行优化
2 创建合理的索引结构,根据查询语句的中查询条件,在关系表上建立相应的索引,如B+树索引和hash索引
3 修改程序业务逻辑,有些功能如果使用SQL语句实现,不但SQL语句复杂,还将导致数据库的负担增加,因此可以将有些数据操作的业务逻辑放到应用层进行实现,就是通过java编程实现
4 修改数据库服务器相关参数,优化服务器性能

⑦ 数据库查询优化问题

有2种方式!!
第一种:先查询页数据,然后再查询总的数据条数,分成两步,速度还可以
第二种:使用语句块或
存储过程
,输出参数,也可以
起始补管你怎么样,都要做2步
但是千万不要用
子查询
来获得数据条数哈,不然你就会蹦

⑧ 数据库表数据量大怎么优化查询速度

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:

SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008

虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

SELECT * FROM orders WHERE customer_num=104 AND order_num>1001

UNION

SELECT * FROM orders WHERE order_num=1008

这样就能利用索引路径处理查询。

4.避免相关子查询

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

AND cust.postcode>“98000”

ORDER BY cust.name

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

ORDER BY cust.name

INTO TEMP cust_with_balance

然后以下面的方式在临时表中查询:

SELECT * FROM cust_with_balance

WHERE postcode>“98000”

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。

⑨ 网站数据库查询如何优化才能达到最佳速度

建议你这样试试看:

  1. 用多少数据就取多少数据原则

  2. 减少连表查询

  3. 给数据库经常查询的表加索引

  4. 优化数据库结构,减少不必要的查询

  5. 经常使用不经常更新的数据缓存起来

这样做的好处:优化数据库查询对于提高网站打开速度、减轻服务器压力非常重要。

注意事项:

1、对查询进行优化,应尽可能避免全表扫描

2、写数据语句时尽可能减少表的全局扫描

3、不要在条件判断时进行 算数运算

4、很多时候用 exists 代替 in 是一个好的选择

5 论索引技巧

⑩ 数据库中查询优化的一般规律是什么

  1. 查询检索的优化首先想到你检索条件中的字段是不是索引字段,不是的话,建立索引

  2. 然后是sql语句的优化,select其实就是循环,循环的次数越多,检索效率越慢,子查询可以有,但是不要超过三层,超过三层,估计就是检索sql有问题,要重新梳理逻辑

  3. 避免笛卡尔积,几个表关联的时候,要用主键或者逻辑主键去关联

  4. 聚合函数的用法,要注意重复数据的过滤

  5. where条件尽量写详细,条件越多,就能过滤掉更多的数据,这样就会提高效率

  6. 对于百万级别或者千万级别的数据量的检索,就不是sql优化那么简单了,要用到数据库本身的一些优化机制,有些数据库带有临时表,这是很好的优化方法

  7. 存储过程也是可以优化sql的,一些循环或者条件判断都可以用存储过程来实现

纯手打。。。。。。。。。。。。。。。。。。。。。。。。。大家可以补充

热点内容
直链云存储 发布:2025-01-16 13:19:30 浏览:726
电脑主机服务器多少钱 发布:2025-01-16 13:00:28 浏览:667
linuxoracle操作 发布:2025-01-16 12:40:50 浏览:47
河北存储服务价格 发布:2025-01-16 12:39:21 浏览:349
挂机服务器的搭建 发布:2025-01-16 12:34:07 浏览:417
安卓怎么删除信任凭证 发布:2025-01-16 12:22:06 浏览:338
代理编译 发布:2025-01-16 12:07:59 浏览:794
服务器为什么老是无响应 发布:2025-01-16 12:07:59 浏览:894
安卓怎么传软件到苹果 发布:2025-01-16 12:01:28 浏览:955
pythonforzip 发布:2025-01-16 11:59:46 浏览:912