漏洞算法
1. 安全漏洞的分类
大众类软件的漏洞。如Windows的漏洞、IE的漏洞等等。
专用软件的漏洞。如Oracle漏洞、Apache漏洞等等。 能读按理不能读的数据,包括内存中的数据、文件中的数据、用户输入的数据、数据库中的数据、网络上传输的数据等等。
能把指定的内容写入指定的地方(这个地方包括文件、内存、数据库等)
输入的数据能被执行(包括按机器码执行、按Shell代码执行、按SQL代码执行等等) 远程漏洞,攻击者可以利用并直接通过网络发起攻击的漏洞。这类漏洞危害极大,攻击者能随心所欲的通过此漏洞操作他人的电脑。并且此类漏洞很容易导致蠕虫攻击,在Windows。
本地漏洞,攻击者必须在本机拥有访问权限前提下才能发起攻击的漏洞。比较典型的是本地权限提升漏洞,这类漏洞在Unix系统中广泛存在,能让普通用户获得最高管理员权限。
触发条件上看可以分为:
主动触发漏洞,攻击者可以主动利用该漏洞进行攻击,如直接访问他人计算机。
被动触发漏洞,必须要计算机的操作人员配合才能进行攻击利用的漏洞。比如攻击者给管理员发一封邮件,带了一个特殊的jpg图片文件,如果管理员打开图片文件就会导致看图软件的某个漏洞被触发,从而系统被攻击,但如果管理员不看这个图片则不会受攻击。 文件操作类型,主要为操作的目标文件路径可被控制(如通过参数、配置文件、环境变量、符号链接灯),这样就可能导致下面两个问题:
写入内容可被控制,从而可伪造文件内容,导致权限提升或直接修改重要数据(如修改存贷数据),这类漏洞有很多,如历史上Oracle TNS LOG文件可指定漏洞,可导致任何人可控制运行Oracle服务的计算机;
内容信息可被输出,包含内容被打印到屏幕、记录到可读的日志文件、产生可被用户读的core文件等等,这类漏洞在历史上Unix系统中的crontab子系统中出现过很多次,普通用户能读受保护的shadow文件;
内存覆盖,主要为内存单元可指定,写入内容可指定,这样就能执行攻击者想执行的代码(缓冲区溢出、格式串漏洞、PTrace漏洞、历史上Windows2000的硬件调试寄存器用户可写漏洞)或直接修改内存中的机密数据。
逻辑错误,这类漏洞广泛存在,但很少有范式,所以难以查觉,可细分为:
条件竞争漏洞(通常为设计问题,典型的有Ptrace漏洞、广泛存在的文件操作时序竞争)
策略错误,通常为设计问题,如历史上FreeBSD的Smart IO漏洞。
算法问题(通常为设计问题或代码实现问题),如历史上微软的Windows 95/98的共享口令可轻易获取漏洞。
设计的不完善,如TCP/IP协议中的3步握手导致了SYN FLOOD拒绝服务攻击。
实现中的错误(通常为设计没有问题,但编码人员出现了逻辑错误,如历史上博彩系统的伪随机算法实现问题)
外部命令执行问题,典型的有外部命令可被控制(通过PATH变量,输入中的SHELL特殊字符等等)和SQL注入问题。 已发现很久的漏洞:厂商已经发布补丁或修补方法,很多人都已经知道。这类漏洞通常很多人已经进行了修补,宏观上看危害比较小。
刚发现的漏洞:厂商刚发补丁或修补方法,知道的人还不多。相对于上一种漏洞其危害性较大,如果此时出现了蠕虫或傻瓜化的利用程序,那么会导致大批系统受到攻击。
0day:还没有公开的漏洞,在私下交易中的。这类漏洞通常对大众不会有什么影响,但会导致攻击者瞄准的目标受到精确攻击,危害也是非常之大。
2. 最新的后一漏洞计算方法都有哪些
关于子女的抚养教育权,法律明确规定,这是父母的权利和义务,公婆是没有权力干涉的,但是毕竟都是一家人,公婆也许是为了家庭考虑,好好沟通,没必要上升到法律高度,如果担心公婆照顾不好孩子,还是自己带吧。
13+20=手动输入:手动输入:Ⅹ h ⒎、 P Щ!
串并联电路的电压规律是电路连接的一种理论知识,分为串联电路和并联电路,其中串联电路的总电压等于各部分电路两端电压之和,在并联电路中各支路用电器两端的电压相等,且等于总电压。
3. 安全漏洞的常见方法
常见攻击方法与攻击过程的简单描述
系统攻击是指某人非法使用或破坏某一信息系统中的资源,以及非授权使系统丧失部分或全部服务功能的行为。
通常可以把攻击活动大致分为远程攻击和内部攻击两种。随着互联网络的进步,其中的远程攻击技术得到很大发展,威胁也越来越大,而其中涉及的系统漏洞以及相关的知识也较多,因此有重要的研究价值。
寻找客户端漏洞
目标:客户端的漏洞?
客户端易受攻击:IE,Outlook,Firefox,MSN,Yahoo etc.
黑客利益的驱使:Botnet,Visa,CD-Key,DDOS etc.
发现漏洞较容易(More 0day?):较容易发现,新的领域
为什么挖掘图像格式中的漏洞?
Windows,Linux等操作系统支持多种图像格式:Bmp, GIF, JPG, ANI, PNG etc.文件格式众多,代码复杂易找到漏洞
Windows中很多图像格式解析的实现方式与开源代码及其相似,经常发现同一bug;(Why?)
黑客们并没有在每种格式中发现漏洞,没有足够的“eyes”关注
从安全人员的角度:
格式众多,算法复杂容易出现漏洞
影响范围极广跨应用跨平台,例如:
Windows 平台上任何解析jpg 的应用,office,outlook,IE...GDIPLUS.dll
Windows 内核实现对Ani 的支持,通过ie 不需要用户互动操作。谁会怀疑网页上的指针文件?
PNG Msn, libpng 很多开源软件
隐蔽性严重威胁用户安全
从黑客的角度:
如果利用图像格式触发的漏洞,会降低了受害者的警觉性,易利用社会工程学。蠕虫传播可能利用一些非常容易让人警惕的文件格式,但我们讨论的是图片格式jgp, png, ani...不容易让人引起怀疑
多种攻击媒介,利于黑客攻击:通过网页,邮件可以穿越防火墙的保护,IDS不易检查,需要对各种格式,协议进行解析才能检查出漏洞攻击。
图像的基本格式
流格式由很多段构成,段里面又由标记,参数(漏洞点),数据段构成
还可能有段里面再嵌套段(漏洞点)
Gif,Ani可能包含很多帧,刷新率,帧的索引(漏洞点)
可能会有标记图形模式的bit-map,可能会有逻辑上的错误png
JPG格式中的漏洞
先来一个实际的例子:
GDIPlus.DLL漏洞MS04-028 Nick DeBaggis
影响巨大,攻击很多
漏洞产生原因:
JPEG格式中的注释段(COM)由0xFFFE开始(标记)+2字节得注释段字节数(参数) +注释(数据)构成。因为字节数这个参数值包含了本身所占的2字节,所以GDIPLUS.dll在解析jpg格式文件中的注释段时会把这个值减去2,如果这个值设置成0,1就会产生整数溢出。
JPG格式中的漏洞
是不是觉得很相似?
2000 Solar Designer 发现了Netscape 浏览器的JPEG 解析漏洞,与Nick DeBaggis 发现的漏洞原理是相同的。
另一个相似的例子
Stefan Esser发现的XBOX Dashboard local vulnerability,该漏洞存在于XBOX Dashboard对.wav格式和.xtf格式文件的解析上,虽然说不是图形格式但漏洞原理却相同。
细节:同样存在一个size参数这次是它本身的大小是4字节,所以当size值为0-3时就会发生整数溢出。
疑问:为什么有些人从偶blog转文章就不写出处呢 也算是我翻来搜去搞来的文章呀bY FIRef0x
疑问:为什么会一再出现同类型的漏洞?
是否程序员们从概念上忽略了某些问题?
为什么都是整数溢出漏洞?
此类漏洞的本质是什么?
是否还有这种漏洞?
问题的本质
这些文件格式是由很多“段”构成的数据流,而每个段由:标记,参数,数据等结构构成,在程序解析这些文件格式的时候会依据“标记”来确认段,并读劝参数” 进行一定的运算,再依据这些参数来处理随后紧跟的“数据”。以上提到的几个漏洞的产生原因就是在对参数进行运算的时候相信了文件输入的参数没有进行确认而导致的。
思维扩展
不要相信用户的输入,同样不要相信文件的输入;
包括标记,错误的标记也会导致问题
包括参数,详细检查输入参数
包括数据,数据里面可能还嵌套着另一个“段”
思维扩展的结果
Venustech AD-Lab:Windows LoadImage API Integer Buffer overflow
影响极为广泛: bmp,cur,ico,ani格式的文件都受影响。
描述:
WINDOWS的USER32库的LoadImage系统API 存在着整数溢出触发的缓冲区溢出漏洞,这个API允许加载一个bmp,cur,ico,ani格式的图标来进行显示,并根据图片格式里说明的大小加4来进行数据的拷贝,如果将图片格式里说明的大小设置为0xfffffffc-0xffffffff,则将触发整数溢出导致堆缓冲区被覆盖。攻击者可以构造恶意的bmp,cur,ico,ani格式的文件,嵌入到HTML页面,邮件中,发送给被攻击者,成功利用该漏洞则可以获得系统的权限。
LoadImage API 整数溢出漏洞分析
代码:
.text:77D56178 mov eax, [ebx+8] //Direct read our size here:P
.text:77D5617B mov [ebp+dwResSize], eax
.text:77D5617E jnz short loc_77D56184
.text:77D56180 add [ebp+dwResSize], 4 //add 4 int overflow...
.text:77D56184
.text:77D56184 loc_77D56184: ; CODE XREF: sub_77D5608F+EF_j
.text:77D56184 push [ebp+dwResSize] //allocate a wrong size
.text:77D56187 push 0
.text:77D56189 push dword_77D5F1A0
.text:77D5618F call ds:RtlAllocateHeap
总结:转换思路后找到这个加4的漏洞,同样的类型,信任“文件”输入。
思维扩展的结果
EEYE 2004:Windows ANI File Parsing Buffer Overflow
堆栈漏洞极易利用,攻击方法隐蔽。
原理:
相信“ 文件” 输入参数,没做检查直接用作memcpy 的参数。
PNG漏洞,不同的模式
逻辑问题1:
EEYE PNG (Portable Network Graphics) Deflate Heap Corruption Vulnerability
原因:对 Length 码 #286 and #287没有做正确的处理,导致解压程序认为长度是0
do { *dest = *src; ++dest; ++src; } while (--len);
逻辑问题2:libPNG 1.2.5堆栈溢出
代码:
if (!(png_ptr->mode & PNG_HAVE_PLTE)) {
/* Should be an error, but we can cope with it */
g_warning(png_ptr, Missing PLTE before tRNS); }
else if (length > (png_uint_32)png_ptr->num_palette) {
g_warning(png_ptr, Incorrect tRNS chunk length);
g_crc_finish(png_ptr, length);
return;
}
分析:代码编写的逻辑错误,错误的使用了else if.
相似漏洞:MSN png 漏洞,Media player png 漏洞
逻辑问题的总结
非常容易出现在复杂的文件格式处理中
容易出现在压缩,解压代码中:需要处理很多长度,大小相关的参数。
这种漏洞不一定是缓冲区溢出,也可能是越界访问等等
想象漏洞
发现漏洞有时候是一种想象的过程
例子1:
Venustech ADLab:Microsoft Windows Kernel ANI File Parsing Crash Vulnerability
介绍:ANI是WINDOWS 支持的动画光标格式,在ANI是由多个普通的光标文件组成一个动画,其中ANI文件的头处会标记是几个图标frame,WINDOWS 的内核在显示光标的时候并未对该值进行检查,如果将这个数字设置为0,会导致受影响的WINDOWS系统计算出错误的光标的地址并加以访问,触发了内核的蓝屏崩溃。不仅仅是应用使用ANI文件时会触发,只要在EXPLORER下打开ANI文件存在的目录就会触发。攻击者也可以发送光标的文件,引诱用户访问含有恶意光标显示的页面,以及发送嵌入光标的HTML邮件,导致被攻击者系统蓝屏崩溃。
原理:在计算frame地址的时候失败。
例子2:
Venustech ADLab:Microsoft Windows Kernel ANI File Parsing DOS Vulnerability
介绍:ANI是WINDOWS 2000支持的动画光标格式,在ANI是由多个普通的光标件组成一个动画,其中ANI文件的头处会标记每FRAME切换的频率,该值越小切换的速度越快,WINDOWS 的内核在切换光标FRAME的时候并未对该值进行检查,如果将这个数字设置为0,受影响的WINDOWS的内核会陷入内核的死锁,不再响应任何用户界面的操作。该漏洞触发必须要在使用ANI文件的应用中才能触发,攻击者引诱用户访问含有恶意光标显示的页面,以及发送嵌入光标的HTML邮件,导致被攻击者系统内核死琐。
原因:没有考虑刷新频率是0的情况。
总结
下溢:Size参数小于自身所占大小
上溢:Size加上一个正整数值产生上溢
直接作为参数输入memcpy类函数
非法参数导致地址访问越界
多种逻辑上的错误
充分发挥想象:刷新率?
总结
安全提示:
文件格式是攻击者的另一种输入渠道,同样不要信任从文件读取的数据
解析文件格式时应该对参数进行充分的检查
同样需要想象力,需要考虑到每种可能的情况
4. 什么是代码漏洞
这都是缓冲区溢出攻击,是由于程序代码的漏洞引起得,缓冲区溢出是指当计算机向缓冲区内填充数据位数时超过了缓冲区本身的容量溢出的数据覆盖在合法数据上,理想的情况是程序检查数据长度并不允许输入超过缓冲区长度的字符,但是绝大多数程序都会假设数据长度总是与所分配的储存空间相匹配,这就为缓冲区溢出埋下隐患.
如ms08004就是远程执行漏洞,ms就是microsoft,08年4日的补丁,黑客通过快速的反汇编手段,知道漏洞的地方,然后制作针对的工具,用来抓肉鸡。通常方法有挂马个扫鸡。
而本地溢出攻击一般用在入侵服务器中的提权,也就是本地提升服务器权限。如ms08025,就可以通过黑客精心构造的代码,执行cmd命令,添加超级管理员!
5. android恶意代码和漏洞检测有什么算法
初始化向量(IV,Initialization Vector)是许多工作模式中用于随机化加密的一块数据,因此可以由相同的明文,相同的密钥产生不同的密文,而无需重新产生密钥,避免了通常相当复杂的这一过程。
密码块链接(CBC,Cipher-block chaining)模式。在CBC模式中,每个明文块先与前一个密文块进行异或后,再进行加密。在这种方法中,每个密文块都依赖于它前面的所有明文块。同时,为了保证每条消息的唯一性,在第一个块中需要使用初始化向量。
6. 常见的几种SSL/TLS漏洞及攻击方式
SSL/TLS漏洞目前还是比较普遍的,首先关闭协议:SSL2、SSL3(比较老的SSL协议)配置完成ATS安全标准就可以避免以下的攻击了,最新的服务器环境都不会有一下问题,当然这种漏洞都是自己部署证书没有配置好导致的。
Export 加密算法
Export是一种老旧的弱加密算法,是被美国法律标示为可出口的加密算法,其限制对称加密最大强度位数为40位,限制密钥交换强度为最大512位。这是一个现今被强制丢弃的算法。
Downgrade(降级攻击)
降级攻击是一种对计算机系统或者通信协议的攻击,在降级攻击中,攻击者故意使系统放弃新式、安全性高的工作方式,反而使用为向下兼容而准备的老式、安全性差的工作方式,降级攻击常被用于中间人攻击,讲加密的通信协议安全性大幅削弱,得以进行原本不可能做到的攻击。 在现代的回退防御中,使用单独的信号套件来指示自愿降级行为,需要理解该信号并支持更高协议版本的服务器来终止协商,该套件是TLS_FALLBACK_SCSV(0x5600)
MITM(中间人攻击)
MITM(Man-in-the-MiddleAttack) ,是指攻击者与通讯的两端分别创建独立的联系,并交换其所有收到的数据,使通讯的两端认为他们正在通过一个私密的连接与对方直接对话,但事实上整个对话都被攻击者完全控制,在中间人攻击中,攻击者可以拦截通讯双方的通话并插入新的内容。一个中间人攻击能成功的前提条件是攻击者能够将自己伪装成每个参与会话的终端,并且不被其他终端识破。
BEAST(野兽攻击)
BEAST(CVE-2011-3389) BEAST是一种明文攻击,通过从SSL/TLS加密的会话中获取受害者的COOKIE值(通过进行一次会话劫持攻击),进而篡改一个加密算法的 CBC(密码块链)的模式以实现攻击目录,其主要针对TLS1.0和更早版本的协议中的对称加密算法CBC模式。
RC4 加密算法
由于早期的BEAST野兽攻击而采用的加密算法,RC4算法能减轻野兽攻击的危害,后来随着客户端版本升级,有了客户端缓解方案(Chrome 和 Firefox 提供了缓解方案),野兽攻击就不是什么大问题了。同样这是一个现今被强制丢弃的算法。
CRIME(罪恶攻击)
CRIME(CVE-2012-4929),全称Compression Ratio Info-leak Made Easy,这是一种因SSL压缩造成的安全隐患,通过它可窃取启用数据压缩特性的HTTPS或SPDY协议传输的私密Web Cookie。在成功读取身份验证Cookie后,攻击者可以实行会话劫持和发动进一步攻击。
SSL 压缩在下述版本是默认关闭的: nginx 1.1.6及更高/1.0.9及更高(如果使用了 OpenSSL 1.0.0及更高), nginx 1.3.2及更高/1.2.2及更高(如果使用较旧版本的 OpenSSL)。
如果你使用一个早期版本的 nginx 或 OpenSSL,而且你的发行版没有向后移植该选项,那么你需要重新编译没有一个 ZLIB 支持的 OpenSSL。这会禁止 OpenSSL 使用 DEFLATE 压缩方式。如果你禁用了这个,你仍然可以使用常规的 HTML DEFLATE 压缩。
Heartbleed(心血漏洞)
Heartbleed(CVE-2014-0160) 是一个于2014年4月公布的 OpenSSL 加密库的漏洞,它是一个被广泛使用的传输层安全(TLS)协议的实现。无论是服务器端还是客户端在 TLS 中使用了有缺陷的 OpenSSL,都可以被利用该缺陷。由于它是因 DTLS 心跳扩展(RFC 6520)中的输入验证不正确(缺少了边界检查)而导致的,所以该漏洞根据“心跳”而命名。这个漏洞是一种缓存区超读漏洞,它可以读取到本不应该读取的数据。如果使用带缺陷的Openssl版本,无论是服务器还是客户端,都可能因此受到攻击。
POODLE漏洞(卷毛狗攻击)
2014年10月14号由Google发现的POODLE漏洞,全称是Padding Oracle On Downloaded Legacy Encryption vulnerability,又被称为“贵宾犬攻击”(CVE-2014-3566),POODLE漏洞只对CBC模式的明文进行了身份验证,但是没有对填充字节进行完整性验证,攻击者窃取采用SSL3.0版加密通信过程中的内容,对填充字节修改并且利用预置填充来恢复加密内容,以达到攻击目的。
TLS POODLE(TLS卷毛狗攻击)
TLS POODLE(CVE-2014-8730) 该漏洞的原理和POODLE漏洞的原理一致,但不是SSL3协议。由于TLS填充是SSLv3的一个子集,因此可以重新使用针对TLS的POODLE攻击。TLS对于它的填充格式是非常严格的,但是一些TLS实现在解密之后不执行填充结构的检查。即使使用TLS也不会容易受到POODLE攻击的影响。
CCS
CCS(CVE-2014-0224) 全称openssl MITM CCS injection attack,Openssl 0.9.8za之前的版本、1.0.0m之前的以及1.0.1h之前的openssl没有适当的限制ChangeCipherSpec信息的处理,这允许中间人攻击者在通信之间使用0长度的主密钥。
FREAK
FREAK(CVE-2015-0204) 客户端会在一个全安全强度的RSA握手过程中接受使用弱安全强度的出口RSA密钥,其中关键在于客户端并没有允许协商任何出口级别的RSA密码套件。
Logjam
Logjam(CVE-2015-4000) 使用 Diffie-Hellman 密钥交换协议的 TLS 连接很容易受到攻击,尤其是DH密钥中的公钥强度小于1024bits。中间人攻击者可将有漏洞的 TLS 连接降级至使用 512 字节导出级加密。这种攻击会影响支持 DHE_EXPORT 密码的所有服务器。这个攻击可通过为两组弱 Diffie-Hellman 参数预先计算 512 字节质数完成,特别是 Apache 的 httpd 版本 2.1.5 到 2.4.7,以及 OpenSSL 的所有版本。
DROWN(溺水攻击/溺亡攻击)
2016年3月发现的针对TLS的新漏洞攻击——DROWN(Decrypting RSA with Obsolete and Weakened eNcryption,CVE-2016-0800),也即利用过时的、弱化的一种RSA加密算法来解密破解TLS协议中被该算法加密的会话密钥。 具体说来,DROWN漏洞可以利用过时的SSLv2协议来解密与之共享相同RSA私钥的TLS协议所保护的流量。 DROWN攻击依赖于SSLv2协议的设计缺陷以及知名的Bleichenbacher攻击。
通常检查以下两点服务器的配置
服务器允许SSL2连接,需要将其关闭。
私钥同时用于允许SSL2连接的其他服务器。例如,Web服务器和邮件服务器上使用相同的私钥和证书,如果邮件服务器支持SSL2,即使web服务器不支持SSL2,攻击者可以利用邮件服务器来破坏与web服务器的TLS连接。
aNULL 包含了非验证的 Diffie-Hellman 密钥交换,这会受到中间人(MITM)攻击
eNULL 包含了无加密的算法(明文)
EXPORT 是老旧的弱加密算法,是被美国法律标示为可出口的
RC4 包含的加密算法使用了已弃用的 ARCFOUR 算法
DES 包含的加密算法使用了弃用的数据加密标准(DES)
SSLv2 包含了定义在旧版本 SSL 标准中的所有算法,现已弃用
MD5 包含了使用已弃用的 MD5 作为哈希算法的所有算法
Openssl Padding Oracle
Openssl Padding Oracle(CVE-2016-2107) openssl 1.0.1t到openssl 1.0.2h之前没有考虑某些填充检查期间的内存分配,这允许远程攻击者通过针对AES CBC会话的padding-oracle攻击来获取敏感的明文信息。
强制丢弃的算法
7. 漏洞检测的几种方法
漏洞扫描有以下四种检测技术:
1.基于应用的检测技术。它采用被动的、非破坏性的办法检查应用软件包的设置,发现安全漏洞。
2.基于主机的检测技术。它采用被动的、非破坏性的办法对系统进行检测。通常,它涉及到系统的内核、文件的属性、操作系统的补丁等。这种技术还包括口令解密、把一些简单的口令剔除。因此,这种技术可以非常准确地定位系统的问题,发现系统的漏洞。它的缺点是与平台相关,升级复杂。
3.基于目标的漏洞检测技术。它采用被动的、非破坏性的办法检查系统属性和文件属性,如数据库、注册号等。通过消息文摘算法,对文件的加密数进行检验。这种技术的实现是运行在一个闭环上,不断地处理文件、系统目标、系统目标属性,然后产生检验数,把这些检验数同原来的检验数相比较。一旦发现改变就通知管理员。
4.基于网络的检测技术。它采用积极的、非破坏性的办法来检验系统是否有可能被攻击崩溃。它利用了一系列的脚本模拟对系统进行攻击的行为,然后对结果进行分析。它还针对已知的网络漏洞进行检验。网络检测技术常被用来进行穿透实验和安全审记。这种技术可以发现一系列平台的漏洞,也容易安装。但是,它可能会影响网络的性能。
网络漏洞扫描
在上述四种方式当中,网络漏洞扫描最为适合我们的Web信息系统的风险评估工作,其扫描原理和工作原理为:通过远程检测目标主机TCP/IP不同端口的服务,记录目标的回答。通过这种方法,可以搜集到很多目标主机的各种信息(例如:是否能用匿名登录,是否有可写的FTP目录,是否能用Telnet,httpd是否是用root在运行)。
在获得目标主机TCP/IP端口和其对应的网络访问服务的相关信息后,与网络漏洞扫描系统提供的漏洞库进行匹配,如果满足匹配条件,则视为漏洞存在。此外,通过模拟黑客的进攻手法,对目标主机系统进行攻击性的安全漏洞扫描,如测试弱势口令等,也是扫描模块的实现方法之一。如果模拟攻击成功,则视为漏洞存在。
在匹配原理上,网络漏洞扫描器采用的是基于规则的匹配技术,即根据安全专家对网络系统安全漏洞、黑客攻击案例的分析和系统管理员关于网络系统安全配置的实际经验,形成一套标准的系统漏洞库,然后再在此基础之上构成相应的匹配规则,由程序自动进行系统漏洞扫描的分析工作。
所谓基于规则是基于一套由专家经验事先定义的规则的匹配系统。例如,在对TCP80端口的扫描中,如果发现/cgi-bin/phf/cgi-bin/Count.cgi,根据专家经验以及CGI程序的共享性和标准化,可以推知该WWW服务存在两个CGI漏洞。同时应当说明的是,基于规则的匹配系统有其局限性,因为作为这类系统的基础的推理规则一般都是根据已知的安全漏洞进行安排和策划的,而对网络系统的很多危险的威胁是来自未知的安全漏洞,这一点和PC杀毒很相似。
这种漏洞扫描器是基于浏览器/服务器(B/S)结构。它的工作原理是:当用户通过控制平台发出了扫描命令之后,控制平台即向扫描模块发出相应的扫描请求,扫描模块在接到请求之后立即启动相应的子功能模块,对被扫描主机进行扫描。通过分析被扫描主机返回的信息进行判断,扫描模块将扫描结果返回给控制平台,再由控制平台最终呈现给用户。
另一种结构的扫描器是采用插件程序结构。可以针对某一具体漏洞,编写对应的外部测试脚本。通过调用服务检测插件,检测目标主机TCP/IP不同端口的服务,并将结果保存在信息库中,然后调用相应的插件程序,向远程主机发送构造好的数据,检测结果同样保存于信息库,以给其他的脚本运行提供所需的信息,这样可提高检测效率。如,在针对某FTP服务的攻击中,可以首先查看服务检测插件的返回结果,只有在确认目标主机服务器开启FTP服务时,对应的针对某FTP服务的攻击脚本才能被执行。采用这种插件结构的扫描器,可以让任何人构造自己的攻击测试脚本,而不用去了解太多扫描器的原理。这种扫描器也可以用做模拟黑客攻击的平台。采用这种结构的扫描器具有很强的生命力,如着名的Nessus就是采用这种结构。这种网络漏洞扫描器的结构如图2所示,它是基于客户端/服务器(C/S)结构,其中客户端主要设置服务器端的扫描参数及收集扫描信息。具体扫描工作由服务器来完成。
8. RC4的漏洞
由于RC4算法加密是采用的xor,所以,一旦子密钥序列出现了重复,密文就有可能被破解。关于如何破解xor加密,请参看Bruce Schneier的Applied Cryptography一书的1.4节Simple XOR,在此我就不细说了。那么,RC4算法生成的子密钥序列是否会出现重复呢?由于存在部分弱密钥,使得子密钥序列在不到100万字节内就发生了完全的重复,如果是部分重复,则可能在不到10万字节内就能发生重复,因此,推荐在使用RC4算法时,必须对加密密钥进行测试,判断其是否为弱密钥。其不足主要体现于,在无线网络中IV(初始化向量)不变性漏洞。
而且,根据目前的分析结果,没有任何的分析对于密钥长度达到128位的RC4有效,所以,RC4是目前最安全的加密算法之一,大家可以放心使用!
分布式代码管理网站Github从2015年1月5日将停止对RC4的支持,RC4作为一种老旧的验证和加密算法易于受到黑客攻击。这意味着,用户在使用Windows XP系统上的IE浏览器时将无法进入github.com网站
9. MD5算法的漏洞谁知道
不是漏洞,而是能被破解。相关资料如下2004年8月17日的美国加州圣巴巴拉的国际密码学会议(Crypto’2004)上,来自中国山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算法的破解结果。宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。
令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云教授又破解了另一国际密码SHA-1。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。
MD5破解工程权威网站是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。
在2004年8月之前,国际密码学界对王小云这个名字并不熟悉。2004年8月,在美国加州圣芭芭拉召开的国际密码大会上,并没有被安排发言的王小云教授拿着自己的研究成果找到会议主席,没想到慧眼识珠的会议主席破例给了她15分钟时间来介绍自己的成果,而通常发言人只被允许有两三分钟的时间。王小云及其研究同工展示了MD5、SHA-0及其他相关杂凑函数的杂凑冲撞。所谓杂凑冲撞指两个完全不同的讯息经杂凑函数计算得出完全相同的杂凑值。根据鸽巢原理,以有长度限制的杂凑函数计算没有长度限制的讯息是必然会有冲撞情况出现的。可是,一直以来,电脑保安专家都认为要任意制造出冲撞需时太长,在实际情况上不可能发生,而王小云等的发现可能会打破这个必然性。就这样,王小云在国际会议上首次宣布了她及她的研究小组近年来的研究成果——对MD4、MD5、HAVAL-128和RIPEMD等四个着名密码算法的破译结果。
在公布到第三个成果的时候,会场上已经是掌声四起,报告不得不一度中断。报告结束后,所有与会专家对他们的突出工作报以长时间的掌声,有些学者甚至起立鼓掌以示他们的祝贺和敬佩。由于版本问题,作者在提交会议论文时使用的一组常数和先行标准不同,在发现这一问题之后,王小云教授立即改变了那个常数,在很短的时间内就完成了新的数据分析,这段有惊无险的小插曲更证明了他们论文的信服力,攻击方法的有效性,验证了研究工作的成功。
令世界顶尖密码学家想象不到的是,破解MD5之后,2005年2月,王小云与其同事提出SHA-1杂凑函数的杂凑冲撞。因为SHA-1在美国等国际社会有更加广泛的应用,密码被破的消息一出,在国际社会的反响可谓石破天惊。换句话说,王小云的研究成果表明了从理论上讲电子签名可以伪造,必须及时添加限制条件,或者重新选用更为安全的密码标准,以保证电子商务的安全。
2005年8月,王小云、姚期智,以及姚期智妻子姚储枫(即为Knuth起名高德纳的人)联手于国际密码讨论年会尾声部份提出SHA-1杂凑函数杂凑冲撞算法的改良版。此改良版使破解SHA-1时间缩短。
2006年6月8日,王小云教授于中国科学院第13次院士大会和中国工程院第8次院士大会上以“国际通用Hash函数的破解”获颁陈嘉庚科学奖信息技术科学奖。 能破解这个的没多少人.....何况这等工程是有多麻烦