当前位置:首页 » 操作系统 » 排序算法是

排序算法是

发布时间: 2022-08-07 21:32:13

‘壹’ 排序法都有哪些

一、插入排序(InsertionSort)
1.基本思想:
每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2.排序过程:
【示例】:
[初始关键字][49]38659776132749
J=2(38)[3849]659776132749
J=3(65)[384965]9776132749
J=4(97)[38496597]76132749
J=5(76)[3849657697]132749
J=6(13)[133849657697]2749
J=7(27)[13273849657697]49
J=8(49)[1327384949657697]

  1. ProcereInsertSort(VarR:FileType);
  2. //对R[1..N]按递增序进行插入排序,R[0]是监视哨//
  3. Begin
  4. forI:=2ToNDo//依次插入R[2],...,R[n]//
  5. begin
  6. R[0]:=R;J:=I-1;
  7. WhileR[0]<R[J]Do//查找R的插入位置//
  8. begin
  9. R[J+1]:=R[J];//将大于R的元素后移//
  10. J:=J-1
  11. end
  12. R[J+1]:=R[0];//插入R//
  13. end
  14. End;//InsertSort//
复制代码二、选择排序
1.基本思想:
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2.排序过程:
【示例】:
初始关键字[4938659776132749]
第一趟排序后13[38659776492749]
第二趟排序后1327[659776493849]
第三趟排序后132738[9776496549]
第四趟排序后13273849[49976576]
第五趟排序后1327384949[979776]
第六趟排序后132738494976[7697]
第七趟排序后13273849497676[97]
最后排序结果1327384949767697
  1. ProcereSelectSort(VarR:FileType);//对R[1..N]进行直接选择排序//
  2. Begin
  3. forI:=1ToN-1Do//做N-1趟选择排序//
  4. begin
  5. K:=I;
  6. ForJ:=I+1ToNDo//在当前无序区R[I..N]中选最小的元素R[K]//
  7. begin
  8. IfR[J]<R[K]ThenK:=J
  9. end;
  10. IfK<>IThen//交换R和R[K]//
  11. beginTemp:=R;R:=R[K];R[K]:=Temp;end;
  12. end
  13. End;//SelectSort//
复制代码三、冒泡排序(BubbleSort)
1.基本思想:
两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2.排序过程:
设想被排序的数组R[1..N]垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:
4913131313131313
3849272727272727
6538493838383838
9765384949494949
7697654949494949
1376976565656565
2727769776767676
4949497697979797
  1. ProcereBubbleSort(VarR:FileType)//从下往上扫描的起泡排序//
  2. Begin
  3. ForI:=1ToN-1Do//做N-1趟排序//
  4. begin
  5. NoSwap:=True;//置未排序的标志//
  6. ForJ:=N-1DownTo1Do//从底部往上扫描//
  7. begin
  8. IfR[J+1]<R[J]Then//交换元素//
  9. begin
  10. Temp:=R[J+1];R[J+1:=R[J];R[J]:=Temp;
  11. NoSwap:=False
  12. end;
  13. end;
  14. IfNoSwapThenReturn//本趟排序中未发生交换,则终止算法//
  15. end
  16. End;//BubbleSort//
复制代码四、快速排序(QuickSort)
1.基本思想:
在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2.排序过程:
【示例】:
初始关键字[4938659776132749]
第一次交换后
[2738659776134949]
第二次交换后
[2738499776136549]
J向左扫描,位置不变,第三次交换后
[2738139776496549]
I向右扫描,位置不变,第四次交换后
[2738134976976549]
J向左扫描
[2738134976976549]
(一次划分过程)

初始关键字
[4938659776132749]
一趟排序之后
[273813]49[76976549]
二趟排序之后
[13]27[38]49[4965]76[97]
三趟排序之后1327384949[65]7697
最后的排序结果1327384949657697
各趟排序之后的状态
  1. ProcereParttion(VarR:FileType;L,H:Integer;VarI:Integer);
  2. //对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置//
  3. Begin
  4. I:=1;J:=H;X:=R;//初始化,X为基准//
  5. Repeat
  6. While(R[J]>=X)And(I<J)Do
  7. begin
  8. J:=J-1//从右向左扫描,查找第1个小于X的元素//
  9. IfI<JThen//已找到R[J]〈X//
  10. begin
  11. R:=R[J];//相当于交换R和R[J]//
  12. I:=I+1
  13. end;
  14. While(R<=X)And(I<J)Do
  15. I:=I+1//从左向右扫描,查找第1个大于X的元素///
  16. end;
  17. IfI<JThen//已找到R>X//
  18. begin R[J]:=R;//相当于交换R和R[J]//
  19. J:=J-1
  20. end
  21. UntilI=J;
  22. R:=X//基准X已被最终定位//
  23. End;//Parttion//
复制代码
  1. ProcereQuickSort(VarR:FileType;S,T:Integer);//对R[S..T]快速排序//
  2. Begin
  3. IfS<TThen//当R[S..T]为空或只有一个元素是无需排序//
  4. begin
  5. Partion(R,S,T,I);//对R[S..T]做划分//
  6. QuickSort(R,S,I-1);//递归处理左区间R[S,I-1]//
  7. QuickSort(R,I+1,T);//递归处理右区间R[I+1..T]//
  8. end;
  9. End;//QuickSort//
复制代码五、堆排序(HeapSort)
1.基本思想:
堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
2.堆的定义:N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2iKi≤K2i+1(1≤I≤[N/2])


堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
3.排序过程:
堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。
【示例】:对关键字序列42,13,91,23,24,16,05,88建堆
  1. ProcereSift(VarR:FileType;I,M:Integer);
  2. //在数组R[I..M]中调用R,使得以它为完全二叉树构成堆。事先已知其左、右子树(2I+1<=M时)均是堆//
  3. Begin
  4. X:=R;J:=2*I;//若J<=M,R[J]是R的左孩子//
  5. WhileJ<=MDo//若当前被调整结点R有左孩子R[J]//
  6. begin
  7. If(J<M)AndR[J].Key<R[J+1].KeyThen
  8. J:=J+1//令J指向关键字较大的右孩子//
  9. //J指向R的左、右孩子中关键字较大者//
  10. IfX.Key<R[J].KeyThen//孩子结点关键字较大//
  11. begin
  12. R:=R[J];//将R[J]换到双亲位置上//
  13. I:=J;J:=2*I//继续以R[J]为当前被调整结点往下层调整//
  14. end;
  15. Else
  16. Exit//调整完毕,退出循环//
  17. end
  18. R:=X;//将最初被调整的结点放入正确位置//
  19. End;//Sift//
复制代码
  1. ProcereHeapSort(VarR:FileType);//对R[1..N]进行堆排序//
  2. Begin
  3. ForI:=NDivDownto1Do//建立初始堆//
  4. Sift(R,I,N)
  5. ForI:=NDownto2do//进行N-1趟排序//
  6. begin
  7. T:=R[1];R[1]:=R;R:=T;//将当前堆顶记录和堆中最后一个记录交换//
  8. Sift(R,1,I-1)//将R[1..I-1]重成堆//
  9. end
  10. End;//HeapSort//
复制代码六、几种排序算法的比较和选择
1.选取排序方法需要考虑的因素:
(1)待排序的元素数目n;
(2)元素本身信息量的大小;
(3)关键字的结构及其分布情况;
(4)语言工具的条件,辅助空间的大小等。
2.小结:
(1)若n较小(n<=50),则可以采用直接插入排序或直接选择排序。由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。
(2)若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。
(3)若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序法中被认为是最好的方法。
(4)在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlog2n)的时间。

这句话很重要它告诉我们自己写的算法是有改进到最优当然没有必要一直追求最优
(5)当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。

‘贰’ 什么是排序算法

排序算法就是将一个数组、字符串等一系列的相同类型的变量按照一定的关系(从小到大或从大到小)排序
比如冒泡法就是将数值排序
比如这个就是从小到大排序
for(i=0;i<3;i++)
for(j=i+1;j<4;j++)
if(a[i]>a[j])
{ temp=a[i];
a[i]=a[j];
a[j]=temp;
}

‘叁’ 什么是排序法

排序法是指根据被评估员工的工作绩效进行比较,从而确定每一员工的相对等级或名次。等级或名次可从优至劣或由劣到优排列。比较标准可根据员工绩效的某一方面(如:出勤率、事故率、优质品率)确定,一般情况下是根据员工的总体工作绩效进行综合比较。

‘肆’ 排序算法有多少种

排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
排序就是把集合中的元素按照一定的次序排序在一起。一般来说有升序排列和降序排列2种排序,在算法中有8中基本排序:
(1)冒泡排序;
(2)选择排序;
(3)插入排序;
(4)希尔排序;
(5)归并排序;
(6)快速排序;
(7)基数排序;
(8)堆排序;
(9)计数排序;
(10)桶排序。
插入排序
插入排序算法是基于某序列已经有序排列的情况下,通过一次插入一个元素的方式按照原有排序方式增加元素。这种比较是从该有序序列的最末端开始执行,即要插入序列中的元素最先和有序序列中最大的元素比较,若其大于该最大元素,则可直接插入最大元素的后面即可,否则再向前一位比较查找直至找到应该插入的位置为止。插入排序的基本思想是,每次将1个待排序的记录按其关键字大小插入到前面已经排好序的子序列中,寻找最适当的位置,直至全部记录插入完毕。执行过程中,若遇到和插入元素相等的位置,则将要插人的元素放在该相等元素的后面,因此插入该元素后并未改变原序列的前后顺序。我们认为插入排序也是一种稳定的排序方法。插入排序分直接插入排序、折半插入排序和希尔排序3类。
冒泡排序
冒泡排序算法是把较小的元素往前调或者把较大的元素往后调。这种方法主要是通过对相邻两个元素进行大小的比较,根据比较结果和算法规则对该二元素的位置进行交换,这样逐个依次进行比较和交换,就能达到排序目的。冒泡排序的基本思想是,首先将第1个和第2个记录的关键字比较大小,如果是逆序的,就将这两个记录进行交换,再对第2个和第3个记录的关键字进行比较,依次类推,重复进行上述计算,直至完成第(n一1)个和第n个记录的关键字之间的比较,此后,再按照上述过程进行第2次、第3次排序,直至整个序列有序为止。排序过程中要特别注意的是,当相邻两个元素大小一致时,这一步操作就不需要交换位置,因此也说明冒泡排序是一种严格的稳定排序算法,它不改变序列中相同元素之间的相对位置关系。
选择排序
选择排序算法的基本思路是为每一个位置选择当前最小的元素。选择排序的基本思想是,基于直接选择排序和堆排序这两种基本的简单排序方法。首先从第1个位置开始对全部元素进行选择,选出全部元素中最小的给该位置,再对第2个位置进行选择,在剩余元素中选择最小的给该位置即可;以此类推,重复进行“最小元素”的选择,直至完成第(n-1)个位置的元素选择,则第n个位置就只剩唯一的最大元素,此时不需再进行选择。使用这种排序时,要注意其中一个不同于冒泡法的细节。举例说明:序列58539.我们知道第一遍选择第1个元素“5”会和元素“3”交换,那么原序列中的两个相同元素“5”之间的前后相对顺序就发生了改变。因此,我们说选择排序不是稳定的排序算法,它在计算过程中会破坏稳定性。
快速排序
快速排序的基本思想是:通过一趟排序算法把所需要排序的序列的元素分割成两大块,其中,一部分的元素都要小于或等于另外一部分的序列元素,然后仍根据该种方法对划分后的这两块序列的元素分别再次实行快速排序算法,排序实现的整个过程可以是递归的来进行调用,最终能够实现将所需排序的无序序列元素变为一个有序的序列。
归并排序
归并排序算法就是把序列递归划分成为一个个短序列,以其中只有1个元素的直接序列或者只有2个元素的序列作为短序列的递归出口,再将全部有序的短序列按照一定的规则进行排序为长序列。归并排序融合了分治策略,即将含有n个记录的初始序列中的每个记录均视为长度为1的子序列,再将这n个子序列两两合并得到n/2个长度为2(当凡为奇数时会出现长度为l的情况)的有序子序列;将上述步骤重复操作,直至得到1个长度为n的有序长序列。需要注意的是,在进行元素比较和交换时,若两个元素大小相等则不必刻意交换位置,因此该算法不会破坏序列的稳定性,即归并排序也是稳定的排序算法。

‘伍’ 排序算法的介绍

所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。

‘陆’ 常用的排序算法都有哪些

排序算法 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
分类
在计算机科学所使用的排序算法通常被分类为:
计算的复杂度(最差、平均、和最好表现),依据串行(list)的大小(n)。一般而言,好的表现是O。(n log n),且坏的行为是Ω(n2)。对于一个排序理想的表现是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要Ω(n log n)。
记忆体使用量(以及其他电脑资源的使用)
稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的串行中R出现在S之前,在排序过的串行中R也将会是在S之前。
一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序(bubble sort)和快速排序(quicksort)。选择排序包含shaker排序和堆排序(heapsort)。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3, 1) (3, 7) (4, 1) (5, 6) (维持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地时作为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个物件间之比较,就会被决定使用在原先资料次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
排列算法列表
在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。
稳定的
冒泡排序(bubble sort) — O(n2)
鸡尾酒排序 (Cocktail sort, 双向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 额外 记忆体
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外 记忆体
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外记忆体
原地归并排序 — O(n2)
二叉树排序 (Binary tree sort) — O(n log n); 需要 O(n) 额外记忆体
鸽巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 额外记忆体
基数排序 (radix sort)— O(n·k); 需要 O(n) 额外记忆体
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 额外记忆体
不稳定
选择排序 (selection sort)— O(n2)
希尔排序 (shell sort)— O(n log n) 如果使用最佳的现在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望时间, O(n2) 最坏情况; 对于大的、乱数串行一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情况时间, 需要 额外的 O(n + k) 空间, 也需要找到最长的递增子序列(longest increasing subsequence)
不实用的排序算法
Bogo排序 — O(n × n!) 期望时间, 无穷的最坏情况。
Stupid sort — O(n3); 递回版本需要 O(n2) 额外记忆体
Bead sort — O(n) or O(√n), 但需要特别的硬体
Pancake sorting — O(n), 但需要特别的硬体
排序的算法
排序的算法有很多,对空间的要求及其时间效率也不尽相同。下面列出了一些常见的排序算法。这里面插入排序和冒泡排序又被称作简单排序,他们对空间的要求不高,但是时间效率却不稳定;而后面三种排序相对于简单排序对空间的要求稍高一点,但时间效率却能稳定在很高的水平。基数排序是针对关键字在一个较小范围内的排序算法。
插入排序
冒泡排序
选择排序
快速排序
堆排序
归并排序
基数排序
希尔排序
插入排序
插入排序是这样实现的:
首先新建一个空列表,用于保存已排序的有序数列(我们称之为"有序列表")。
从原数列中取出一个数,将其插入"有序列表"中,使其仍旧保持有序状态。
重复2号步骤,直至原数列为空。
插入排序的平均时间复杂度为平方级的,效率不高,但是容易实现。它借助了"逐步扩大成果"的思想,使有序列表的长度逐渐增加,直至其长度等于原列表的长度。
冒泡排序
冒泡排序是这样实现的:
首先将所有待排序的数字放入工作列表中。
从列表的第一个数字到倒数第二个数字,逐个检查:若某一位上的数字大于他的下一位,则将它与它的下一位交换。
重复2号步骤,直至再也不能交换。
冒泡排序的平均时间复杂度与插入排序相同,也是平方级的,但也是非常容易实现的算法。
选择排序
选择排序是这样实现的:
设数组内存放了n个待排数字,数组下标从1开始,到n结束。
i=1
从数组的第i个元素开始到第n个元素,寻找最小的元素。
将上一步找到的最小元素和第i位元素交换。
如果i=n-1算法结束,否则回到第3步
选择排序的平均时间复杂度也是O(n²)的。
快速排序
现在开始,我们要接触高效排序算法了。实践证明,快速排序是所有排序算法中最高效的一种。它采用了分治的思想:先保证列表的前半部分都小于后半部分,然后分别对前半部分和后半部分排序,这样整个列表就有序了。这是一种先进的思想,也是它高效的原因。因为在排序算法中,算法的高效与否与列表中数字间的比较次数有直接的关系,而"保证列表的前半部分都小于后半部分"就使得前半部分的任何一个数从此以后都不再跟后半部分的数进行比较了,大大减少了数字间不必要的比较。但查找数据得另当别论了。
堆排序
堆排序与前面的算法都不同,它是这样的:
首先新建一个空列表,作用与插入排序中的"有序列表"相同。
找到数列中最大的数字,将其加在"有序列表"的末尾,并将其从原数列中删除。
重复2号步骤,直至原数列为空。
堆排序的平均时间复杂度为nlogn,效率高(因为有堆这种数据结构以及它奇妙的特征,使得"找到数列中最大的数字"这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度),但是实现相对复杂(可以说是这里7种算法中比较难实现的)。
看起来似乎堆排序与插入排序有些相像,但他们其实是本质不同的算法。至少,他们的时间复杂度差了一个数量级,一个是平方级的,一个是对数级的。
平均时间复杂度
插入排序 O(n2)
冒泡排序 O(n2)
选择排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
归并排序 O(n log n)
基数排序 O(n)
希尔排序 O(n1.25)
冒泡排序
654
比如说这个,我想让它从小到大排序,怎么做呢?
第一步:6跟5比,发现比它大,则交换。564
第二步:5跟4比,发现比它大,则交换。465
第三步:6跟5比,发现比它大,则交换。456

‘柒’ 排序算法的分类

排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
稳定度(稳定性)
一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。
(4,1)(3,1)(3,7)(5,6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:
(3,1)(3,7)(4,1)(5,6) (维持次序)
(3,7)(3,1)(4,1)(5,6) (次序被改变)
不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。
在计算机科学所使用的排序算法通常被分类为:
(a)计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是 O(nlogn),且坏的性能是 O(n^2)。对于一个排序理想的性能是 O(n)。
而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要 O(nlogn)。
(b)存储器使用量(空间复杂度)(以及其他电脑资源的使用)
(c)稳定度:稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
(d)一般的方法:插入、交换、选择、合并等等。交换排序包含冒泡排序和快速排序。插入排序包含希尔排序,选择排序包括堆排序等。

‘捌’ 常见排序算法有哪些

常用的排序算法有:冒泡排序、选择排序、堆排序、SHELL排序、快速排序、归并排序、磁盘排序等等。但是每种排序算法都是各有优缺点。如果需要进一步研究各种算法的性能的话,那么就必须学习计算机算法和复杂性这门课程。

热点内容
数据库10061 发布:2025-01-16 16:11:47 浏览:700
电脑网络ip地址怎么配置 发布:2025-01-16 16:03:48 浏览:329
我的世界安卓网易版怎么装材质包 发布:2025-01-16 16:00:55 浏览:254
404页面源码 发布:2025-01-16 15:58:48 浏览:887
手机建行密码忘记了怎么办 发布:2025-01-16 15:45:38 浏览:224
易语言视频播放源码 发布:2025-01-16 15:39:35 浏览:343
肇观算法 发布:2025-01-16 15:38:39 浏览:610
管家婆找不到加密狗 发布:2025-01-16 15:10:28 浏览:308
linux的etcfstab 发布:2025-01-16 15:00:43 浏览:364
电脑无法登录内网服务器 发布:2025-01-16 15:00:28 浏览:575