linux驱动定时器
A. 如何在linux下实现定时器
定时器Timer应用场景非常广泛,在Linux下,有以下几种方法:
1,使用sleep()和usleep()
其中sleep精度是1秒,usleep精度是1微妙,具体代码就不写了。使用这种方法缺点比较明显,在Linux系统中,sleep类函数不能保证精度,尤其在系统负载比较大时,sleep一般都会有超时现象。
2,使用信号量SIGALRM + alarm()
这种方式的精度能达到1秒,其中利用了*nix系统的信号量机制,首先注册信号量SIGALRM处理函数,调用alarm(),设置定时长度,代码如下:
[cpp] view plain
#include <stdio.h>
#include <signal.h>
void timer(int sig)
{
if(SIGALRM == sig)
{
printf("timer\n");
alarm(1); //we contimue set the timer
}
return ;
}
int main()
{
signal(SIGALRM, timer); //relate the signal and function
alarm(1); //trigger the timer
getchar();
return 0;
}
alarm方式虽然很好,但是无法首先低于1秒的精度。
3,使用RTC机制
RTC机制利用系统硬件提供的Real Time Clock机制,通过读取RTC硬件/dev/rtc,通过ioctl()设置RTC频率,代码如下:
[cpp] view plain
#include <stdio.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdlib.h>
int main(int argc, char* argv[])
{
unsigned long i = 0;
unsigned long data = 0;
int retval = 0;
int fd = open ("/dev/rtc", O_RDONLY);
if(fd < 0)
{
perror("open");
exit(errno);
}
/*Set the freq as 4Hz*/
if(ioctl(fd, RTC_IRQP_SET, 1) < 0)
{
perror("ioctl(RTC_IRQP_SET)");
close(fd);
exit(errno);
}
/* Enable periodic interrupts */
if(ioctl(fd, RTC_PIE_ON, 0) < 0)
{
perror("ioctl(RTC_PIE_ON)");
close(fd);
exit(errno);
}
for(i = 0; i < 100; i++)
{
if(read(fd, &data, sizeof(unsigned long)) < 0)
{
perror("read");
close(fd);
exit(errno);
}
printf("timer\n");
}
/* Disable periodic interrupts */
ioctl(fd, RTC_PIE_OFF, 0);
close(fd);
return 0;
}
这种方式比较方便,利用了系统硬件提供的RTC,精度可调,而且非常高。
4,使用select()
这种方法在看APUE神书时候看到的,方法比较冷门,通过使用select(),来设置定时器;原理利用select()方法的第5个参数,第一个参数设置为0,三个文件描述符集都设置为NULL,第5个参数为时间结构体,代码如下:
[cpp] view plain
#include <sys/time.h>
#include <sys/select.h>
#include <time.h>
#include <stdio.h>
/*seconds: the seconds; mseconds: the micro seconds*/
void setTimer(int seconds, int mseconds)
{
struct timeval temp;
temp.tv_sec = seconds;
temp.tv_usec = mseconds;
select(0, NULL, NULL, NULL, &temp);
printf("timer\n");
return ;
}
int main()
{
int i;
for(i = 0 ; i < 100; i++)
setTimer(1, 0);
return 0;
}
这种方法精度能够达到微妙级别,网上有很多基于select()的多线程定时器,说明select()稳定性还是非常好。
总结:如果对系统要求比较低,可以考虑使用简单的sleep(),毕竟一行代码就能解决;如果系统对精度要求比较高,则可以考虑RTC机制和select()机制。
B. linux 环境下定时器怎么写
-
#include
#include
#include time.h>
#include
#include
static int count = 0;
static struct itimerval oldtv;
void set_timer()
{
struct itimerval itv;
itv.it_interval.tv_sec = 1;
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = 1;
itv.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, &oldtv);
}
void signal_handler(int m)
{
count ++;
printf("%d\n", count);
}
int main()
{
signal(SIGALRM, signal_handler);
set_timer();
while(count < 10000);
exit(0);
return 1;
}
C. Linux内核定时器怎样控制用户和内核空间的读写
关于内核空间和用户空间,说的是linux驱动程序一般工作在内核空间,但也可以工作在用户空间。下面将详细解析,什么是内核空间,什么是用户空间,以及如何判断他们。 Linux简化了分段机制,使得虚拟地址与线性地址总是一致,因此,Linux的虚拟地...
D. 怎样在Linux下实现精确定时器
linux下使用select实现精确定时器
在编写程序时,我们经常回用到定时器。本文讲述如何使用select实现超级时钟。使用select函数,我们能实现微妙级别精度的定时器。同时,select函数也是我们在编写非阻塞程序时经常用到的一个函数。
首先看看select函数原型如下:
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
参数说明:
slect的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。
select的第二三四个参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件。所以每次调用select前都需重新初始化fdset。
timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。
利用select实现定时器,需要利用其timeout参数,注意到:
1)select函数使用了一个结构体timeval作为其参数。
2)select函数会更新timeval的值,timeval保持的值为剩余时间。
如果我们指定了参数timeval的值,而将其他参数都置为0或者NULL,那么在时间耗尽后,select函数便返回,基于这一点,我们可以利用select实现精确定时。
timeval的结构如下:
struct timeval{
long tv_sec;/*secons*
long tv_usec;/*microseconds*/
}
我们可以看出其精确到microseconds也即微妙。
一、秒级定时器
void seconds_sleep(unsigned seconds){
struct timeval tv;
tv.tv_sec=seconds;
tv.tv_usec=0;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
二、毫秒级别定时器
void milliseconds_sleep(unsigned long mSec){
struct timeval tv;
tv.tv_sec=mSec/1000;
tv.tv_usec=(mSec%1000)*1000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
三、微妙级别定时器
void microseconds_sleep(unsigned long uSec){
struct timeval tv;
tv.tv_sec=uSec/1000000;
tv.tv_usec=uSec%1000000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}
现在我们来编写几行代码看看定时效果吧。
#include <stdio.h>
#include <sys/time.h>
#include <errno.h>
int main()
{
int i;
for(i=0;i<5;++i){
printf("%d\n",i);
//seconds_sleep(1);
//milliseconds_sleep(1500);
microseconds_sleep(1900000);
}
}
注:timeval结构体中虽然指定了一个微妙级别的分辨率,但内核支持的分别率往往没有这么高,很多unix内核将超时值向上舍入成10ms的倍数。此外,加上内核调度延时现象,即定时器时间到后,内核还需要花一定时间调度相应进程的运行。因此,定时器的精度,最终还是由内核支持的分别率决定。
E. linux内核定时器,最多可以申请多少个有没有数据限制一个驱动程序里,可以申请几个定时器
内核定时器理论上没限制,一定要说限制,那么与存储空间如内存大小有关。
F. Linux中断与定时器
所谓中断是指CPU在执行程序的过程中,出现了某些突发事件急待处理,CPU必须暂停当前程序的执行,转去处理突发事件,处理完毕后又返回原程序被中断的位置继续执行。根据中断的来源,中断可分为内部中断和外部中断,内部中断的中断源来自CPU内部(软件中断指令、溢出、除法错误等,例如,操作系统从用户态切换到内核态需借助CPU内部的软件中断),外部中断的中断源来自CPU外部,由外设提出请求。根据中断是否可以屏蔽,中断可分为可屏蔽中断与不可屏蔽中断(NMI),可屏蔽中断可以通过设置中断控制器寄存器等方法被屏蔽,屏蔽后,该中断不再得到响应,而不可屏蔽中断不能被屏蔽。
根据中断入口跳转方法的不同,中断可分为向量中断和非向量中断。采用向量中断的CPU通常为不同的中断分配不同的中断号,当检测到某中断号的中断到来后,就自动跳转到与该中断号对应的地址执行。不同中断号的中断有不同的入口地址。非向量中断的多个中断共享一个入口地址,进入该入口地址后,再通过软件判断中断标志来识别具体是哪个中断。也就是说,向量中断由硬件提供中断服务程序入口地址,非向量中断由软件提供中断服务程序入口地址。
嵌入式系统以及x86PC中大多包含可编程中断控制器(PIC),许多MCU内部就集成了PIC。如在80386中,PIC是两片i8259A芯片的级联。通过读写PIC的寄存器,程序员可以屏蔽/使能某中断及获得中断状态,前者一般通过中断MASK寄存器完成,后者一般通过中断PEND寄存器完成。定时器在硬件上也依赖中断来实现,典型的嵌入式微处理器内可编程间隔定时器(PIT)的工作原理,它接收一个时钟输入,当时钟脉冲到来时,将目前计数值增1并与预先设置的计数值(计数目标)比较,若相等,证明计数周期满,并产生定时器中断且复位目前计数值。
G. 有谁会用linux里面的定时器timer_list
大家来学习学习,“jiffies + HZ”这个时间是怎么计算,还不是非常理解。我的整体理解是,驱动被加载一秒内,运行myfunc函数,myfunc函数打印一个“Hello,world!"后,每两秒再打印一个"Hello,world!"。驱动函数不需要你自己写main函数,你配置成y会自动被拉起,配置成m,需要手动通过工具拉起。