偏微分的运算法则
⑴ 关于偏导数的计算
根据多元复合函数的链式求导法则,z(x,y)是y的函数,z/x含有自变量y的函数,因此z/x对自变量y求偏导数时,x看作常数,z是y的函数,由多元复合函数的求导公式为1/x*Zy。
⑵ 偏导数是什么它和导数有什么区别
偏导数是将一元函数的导数推广到多元函数,我们知道,导数是函数的局部性质,函数在一点的导数描述了这个函数在这一点附近的变化率,反映函数变化的快慢。一个多变量函数的偏导数,就是它关于其中一个变量的导数而保持其他变量不变。
区别:
一、一元函数,可导必连续,连续不一定可导。多元函数,偏导数存在不能保证连续。
二、几何意义不同
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
(2)偏微分的运算法则扩展阅读
求法:
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
⑶ 偏微分方程 好学吗
郭敦颙回答:
导数与偏导数,定积分与重积分,微分方程与偏微分方程,它们各自间是有联系的是多了一元,而基本运算法则是相通的,正如你学了导数,那么学偏导数不难:学了定积分,那么学重积分不难;同样你学了微分方程,那么学偏微分方程不难,是好学的。
⑷ 偏导数的运算法则
N=(x-y)/(x+y)
分别对x,y求偏导数
其实求偏导数跟求导数是一样的,只不过以前学得是一元的求导,现在是二元求导
如果对x求偏导数,那么你就将y当作常数就行了
则有:
aN/ax(这里a是偏导数负号)
=[1*(x+y)-(x-y)]/(x+y)^2
=2y/(x+y)^2
同理对y求偏导数也一样
aN/ay
=[-(x+y)-(x-y)]/(x+y)^2
=-2x/(x+y)^2
对于你说的算不确定度传递公式的问题,
我对这方面的内容不懂
你可以在物理版块上问问知道的朋友!
⑸ 偏导数怎么求
当函数 z=f(x,y) 在 (x0,y0)的两个偏导数 f'x(x0,y0) 与 f'y(x0,y0)都存在时,我们称 f(x,y) 在 (x0,y0)处可导。如果函数 f(x,y) 在域 D 的每一点均可导,那么称函数 f(x,y) 在域 D 可导。
此时,对应于域 D 的每一点 (x,y) ,必有一个对 x (对 y )的偏导数,因而在域 D 确定了一个新的二元函数,称为 f(x,y) 对 x (对 y )的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
比如f(x,y)=x^2+2xy+y^2,对x求偏导就是f'x=(x^2)'+2y *(x)'=2x+2y。
(5)偏微分的运算法则扩展阅读:
偏导数的几何意义:表示固定面上一点的切线斜率。
偏导数 f'x(x0,y0) 表示固定面上一点对 x 轴的切线斜率;偏导数 f'y(x0,y0) 表示固定面上一点对 y 轴的切线斜率。
高阶偏导数:如果二元函数 z=f(x,y) 的偏导数 f'x(x,y) 与 f'y(x,y) 仍然可导,那么这两个偏导函数的偏导数称为 z=f(x,y) 的二阶偏导数。
二元函数的二阶偏导数有四个:f"xx,f"xy,f"yx,f"yy。
注意:
f"xy与f"yx的区别在于:前者是先对 x 求偏导,然后将所得的偏导函数再对 y 求偏导;后者是先对 y 求偏导再对 x 求偏导。当 f"xy 与 f"yx 都连续时,求导的结果与先后次序无关。
⑹ 什么是偏微分方程导数
如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。
导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
这些大学都学 ,很重要
⑺ 偏导数的计算方法
对谁求偏导,其余变量都看作常数。
例 f(x.y)=x^2+3xy+y-3
对x偏导为2x+3y
对y偏导为3x+1
多元函数类似
⑻ 导数和偏导数的区别
导数和偏导没有本质区别,都是当自变量的变化量趋于0时,函数值的变化量与自变量变化量比值的极限。一元函数,一个y对应一个x,导数只有一个。二元函数,一个z对应一个x和一个y,那就有两个导数了,一个是z对x的导数,一个是z对y的导数,称之为偏导。
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
(8)偏微分的运算法则扩展阅读
一.早期导数概念----特殊的形式
大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
二.17世纪----广泛使用的“流数术”
17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。
牛顿的有关“流数术”的主要着作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三.19世纪导数----逐渐成熟的理论
1750年达朗贝尔在为法国科学家院出版的《网络全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。
1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。
19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四.实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
⑼ 求助!!!高数偏微分计算~~
N=(x-y)/(x+y)
分别对x,y求偏导数
其实求偏导数跟求导数是一样的,只不过以前学得是一元的求导,现在是二元求导
如果对x求偏导数,那么你就将y当作常数就行了
则有:
aN/ax(这里a是偏导数负号)
=[1*(x+y)-(x-y)]/(x+y)^2
=2y/(x+y)^2
同理对y求偏导数也一样
aN/ay
=[-(x+y)-(x-y)]/(x+y)^2
=-2x/(x+y)^2
对于你说的算不确定度传递公式的问题,
我对这方面的内容不懂
你可以在物理版块上问问知道的朋友!
⑽ 偏微分法则
这是一元函数,只有一个变量,只能求微分,不能求偏微分。
要想求偏微分,必须是多元函数(至少是二元),具体求法:如果对x求偏微分,那么将y看成是常数,对x求导就行了。对y也一样。