快速查找算法
❶ 各种查找算法的比较
二分法平均查找效率是O(logn),但是需要数组是排序的。如果没有排过序,就只好先用O(nlogn)的预处理为它排个序了。而且它的插入比较困难,经常需要移动整个数组,所以动态的情况下比较慢。
哈希查找理想的插入和查找效率是O(1),但条件是需要找到一个良好的散列函数,使得分配较为平均。另外,哈希表需要较大的空间,至少要比O(n)大几倍,否则产生冲突的概率很高。
二叉排序树查找也是O(logn)的,关键是插入值时需要做一些处理使得它较为平衡(否则容易出现轻重的不平衡,查找效率最坏会降到O(n)),而且写起来稍微麻烦一些,具体的算法你可以随便找一本介绍数据结构的书看看。当然,如果你用的是c语言,直接利用它的库类型map、multimap就可以了,它是用红黑树实现的,理论上插入、查找时间都是O(logn),很方便,不过一般会比自己实现的二叉平衡树稍微慢一些。
❷ 编程算法有哪些
具体算法如下:
1、快速排序算法快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要Ο(nlogn)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。
2、堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
3、归并排序(Mergesort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。
4、二分查找算法是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束。
5、BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。
6、深度优先搜索算法,是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。
❸ 如何实现十几万条数据的最快查找
你说的是算法吧,具体是什么样的数据?
分几种情况:
1、只需要查找一次,那就直接遍历一次。
2、需要多次查找,查找次数可以与数据总数相比,那就可以先排序后二分查找(如果可排序的话)。也可以建立一个哈希表(如果是整数、字符串等等),实现O(1)的查找。
实际情况是,不需要你自己造轮子,多数编程语言有封装好的数据结构拿来直接用。比如C++ STL的 set 和 unordered_set 存储不重复的数据;map 和 unordered_map 存储有重复的数据(数据为键,出现次数为值),这都比你自己写要快。
❹ 数据结构中有哪些基本算法
数据结构中最基本的算法有:查找、排序、快速排序,堆排序,归并排序,,二分搜索算法
等等。
1、用的最多也是最简单的数据结构是线性表。
2、有前途的又难数据结构是图 。
3、常用的80%算法是排序和查找。
❺ 数据快速查找的算法(asp.net)
在要查询的字段上建立聚集索引,查询的字段越少,速度越快。
不要使用NOT关键字
❻ 怎样才能快速搜索路由表有哪些着名的搜索算法
有三个路由器,a,b和c。路由器a的两个网络接口f0和s0
分别连接在
10.1.0.0和10.2.0.0网段上;路由器b的两个网络接口s0和s1
分别连接在
10.2.0.0和10.3.0.0网段上;路由器c的两个网络接口s0和e0
分别连接在
10.3.0.0和10.4.0.0网段上;
如上图中各路由表的前两行所示,通过路由表的网络接口到与之直接相连的网
络的网络连接,其向量距离设置为0。这即是最初的路由表。
当路由器b和a以及b和c之间相互交换路由信息后,它们会更新各自的路由表。
例如,路由器b通过网络端口s1收到路由器c的路由信息(10.3.0.0,s0,0)和(10.4.0.0,e0,0)后,在自己的路由表中增加一条(10.4.0.0,s1,1)路由信息。该信息表示:通过路由器b的网络接
口s1可以访问到10.4.0.0网段,其向量距离为1,该向量距离是在路由器c的基础上加1获得的。
同样道理,路由器b还会产生一条(10.1.0.0,s0,1)路由,这条路由是通过网络端口s0从路由器a
获得的。如此反复,直到最终收敛,形成图中所示的路由表。
概括地说,距离向量算法要求每一个路由器把它的整个路由表发送给与它直接连接的其它路由
器。路由表中的每一条记录都包括目标逻辑地址、相应的网络接口和该条路由的向量距离。当一个路
由器从它的相邻处收到更新信息时,它会将更新信息与本身的路由表相比较。如果该路由器比较出一条
新路由或是找到一条比当前路由更好的路由时,它会对路由表进行更新:将从该路由器到邻居之间的
向量距离与更新信息中的向量距离相加作为新路由的向量距离。
❼ python快速查找算法应用实例
python快速查找算法应用实例
文实例讲述了Python快速查找算法的应用,分享给大家供大家参考。
具体实现方法如下:
import random
def partition(list_object,start,end):
random_choice = start
#random.choice(range(start,end+1))
#把这里的start改成random()效率会更高些
x = list_object[random_choice]
i = start
j = end
while True:
while list_object[i] < x and i < end:
i += 1
while list_object[j] > x:
j -= 1
if i >= j:
break
list_object[i],list_object[j] = list_object[j],list_object[i]
print list_object
#list_object[random_choice] = list_object[j]
#list_object[j] = random_choice
return j
def quick_sort(list_object,start,end):
if start < end:
temp = partition(list_object,start,end)
quick_sort(list_object,start,temp-1)
quick_sort(list_object,temp + 1 ,end)
a_list = [69,65,90,37,92,6,28,54]
quick_sort(a_list,0,7)
print a_list
程序测试环境为Python2.7.6
输出结果如下:
[54, 65, 28, 37, 6, 69, 92, 90]
[6, 37, 28, 54, 65, 69, 92, 90]
[6, 37, 28, 54, 65, 69, 92, 90]
[6, 28, 37, 54, 65, 69, 92, 90]
[6, 28, 37, 54, 65, 69, 90, 92]
[6, 28, 37, 54, 65, 69, 90, 92]
希望本文所述对大家的Python程序设计有所帮助。
❽ 数据结构有哪些基本算法
数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及它们之间的关系和操作等相关问题的学科。
可以理解为:程序设计 = 数据结构 + 算法
数据结构算法具有五个基本特征:输入、输出、有穷性、确定性和可行性。
1、输入:一个算法具有零个或者多个输出。以刻画运算对象的初始情况,所谓0个输入是指算法本身定出了初始条件。后面一句话翻译过来就是,如果一个算法本身给出了初始条件,那么可以没有输出。比如,打印一句话:NSLog(@"你最牛逼!");
2、输出:算法至少有一个输出。也就是说,算法一定要有输出。输出的形式可以是打印,也可以使返回一个值或者多个值等。也可以是显示某些提示。
3、有穷性:算法的执行步骤是有限的,算法的执行时间也是有限的。
4、确定性:算法的每个步骤都有确定的含义,不会出现二义性。
5、可行性:算法是可用的,也就是能够解决当前问题。
数据结果的基本算法有:
1、图搜索(广度优先、深度优先)深度优先特别重要
2、排序
3、动态规划
4、匹配算法和网络流算法
5、正则表达式和字符串匹配
6、三路划分-快速排序
7、合并排序(更具扩展性,复杂度类似快速排序)
8、DF/BF 搜索 (要知道使用场景)
9、Prim / Kruskal (最小生成树)
10、Dijkstra (最短路径算法)
11、选择算法
❾ 对于树型文件目录,有什么快速的查找算法
如果用C语言,应该要写成这样:
typedef
struct
node{int
key;
struct
node
*lchild;
struct
node
*rchild;}bitree;
bitree
*bstsearch(bitree
*t,
int
k)
{
if
(t==NULL
)
//这里t是一个指针,是不能跟0判等的,要和空指针判等
{
return(NULL)
❿ 用C++如何实现数据的快速查找和存储
把数据存储到文件里面, 可以通过fopen fwrite等函数读写文件