机器学习相关算法
A. 想了解机器学习,需要知道哪些基础算法
学一些概率论,导数和线性代数。机器学习的本质是拿训练样本去做数据拟合函数,然后用拟合函数解析输入量。机器学习比较基础的是最小二乘法,梯度下降之类的。到后面要学线性拟合,logistic函数,SVM等等。
B. 目前最流行的机器学习算法是什么
毫无疑问,机器学习在过去几年越来越受欢迎。由于大数据是目前技术行业最热门的趋势,机器学习是非常强大的,可以根据大量数据进行预测或计算推理。
如果你想学习机器算法,要从何下手呢?
监督学习
1. 决策树:决策树是一种决策支持工具,使用的决策及其可能产生的后果,包括随机事件的结果,资源消耗和效用的树状图或模型。
从业务决策的角度来看,决策树是人们必须要选择是/否的问题,以评估大多数时候作出正确决策的概率。它允许您以结构化和系统的方式来解决问题,以得出逻辑结论。
2.朴素贝叶斯分类:朴素贝叶斯分类器是一种简单的概率分类器,基于贝叶斯定理,其特征之间具有强大(朴素)的独立性假设。
特征图像是方程 - P(A | B)是后验概率,P(B | A)是似然度,P(A)是类先验概率,P(B)是预测先验概率。
一些现实世界的例子是:
判断邮件是否为垃圾邮件
分类技术,将新闻文章氛围政治或体育类
检查一段表达积极情绪或消极情绪的文字
用于面部识别软件
3.普通最小二乘回归:如果你了解统计学,你可能已经听说过线性回归。最小二乘法是一种执行线性回归的方法。
您可以将线性回归视为拟合直线穿过点状分布的任务。有多种可能的策略可以做到这一点,“普通最小二乘法”策略就像这样 -你可以画一条线,然后把每个数据点,测量点和线之间的垂直距离,添加上去;拟合线将是距离总和的尽可能小的线。
线性是指您正在使用的模型来迎合数据,而最小二乘可以最小化线性模型误差。
4.逻辑回归: Logistic回归是一个强大的统计学方法,用一个或多个解释变量建模二项式结果。它通过使用逻辑函数估计概率,来衡量分类因变量与一个或多个独立变量之间的关系,后者是累积逻辑分布。
逻辑回归用于生活中:
信用评级
衡量营销活动的成功率
预测某一产品的收入
某一天会有地震吗
5.支持向量机: SVM是二元分类算法。给定N维空间中两种种类型的点,SVM生成(N-1)维的超平面将这些点分成2组。
假设你有一些可以线性分离的纸张中的两种类型的点。SVM将找到一条直线,将这些点分成两种类型,并尽可能远离所有这些点。
在规模上,使用SVM解决的一些特大的问题(包括适当修改的实现)是:广告、人类基因剪接位点识别、基于图像的性别检测,大规模图像分类...
6.集成方法:集成方法是构建一组分类器的学习算法,然后通过对其预测进行加权投票来对新的数据点进行分类。原始的集成方法是贝叶斯平均法,但更新的算法包括纠错输出编码、bagging和boosting。
那么集成方法如何工作,为什么它们优于单个模型?
均衡偏差:如果你均衡了大量的倾向民主党的投票和大量倾向共和党的投票,你总会得到一个不那么偏颇的结果。
降低方差:集合大量模型的参考结果,噪音会小于单个模型的单个结果。在金融领域,这被称为投资分散原则(diversification)——一个混搭很多种股票的投资组合,比单独的股票更少变故。
不太可能过度拟合:如果您有单个模型不完全拟合,您以简单的方式(平均,加权平均,逻辑回归)结合每个模型建模,那么一般不会发生过拟合。
无监督学习
7. 聚类算法:聚类是对一组对象进行分组的任务,使得同一组(集群)中的对象彼此之间比其他组中的对象更相似。
每个聚类算法是不同的,比如:
基于Centroid的算法
基于连接的算法
基于密度的算法
概率
降维
神经网络/深度学习
8. 主成分分析: PCA是使用正交变换将可能相关变量的观察值转换为主成分的线性不相关变量值的一组统计过程。
PCA的一些应用包括压缩、简化数据、便于学习、可视化。请注意,领域知识在选择是否继续使用PCA时非常重要。数据嘈杂的情况(PCA的所有组件都有很大差异)的情况不适用。
9.奇异值分解:在线性代数中,SVD是真正复杂矩阵的因式分解。对于给定的m * n矩阵M,存在分解,使得M =UΣV,其中U和V是酉矩阵,Σ是对角矩阵。
PCA实际上是SVD的简单应用。在计算机视觉技术中,第一个人脸识别算法使用PCA和SVD,以将面部表示为“特征脸”的线性组合,进行降维,然后通过简单的方法将面部匹配到身份;虽然这种方法更复杂,但仍然依赖于类似的技术。
10.独立成分分析: ICA是一种统计技术,用于揭示随机变量、测量或信号集合的隐藏因素。ICA定义了观察到的多变量数据的生成模型,通常将其作为大型样本数据库。
在模型中,假设数据变量是一些未知潜在变量的线性混合,混合系统也是未知的。潜变量被假定为非高斯和相互独立的,它们被称为观测数据的独立成分。
ICA与PCA相关,但它是一种更强大的技术,能够在这些经典方法完全失败时找到潜在的源因素。其应用包括数字图像、文档数据库、经济指标和心理测量。
C. 典型的机器学习算法有哪些
通常而言,能够深入研究机器学习算法,并按照自己项目需求进行定制开发的人,编程语言真的是一个很次要的问题。
machine learning in Java
machine learning in C++
machine learning in Python
machine learning in Matlab
machine learning in R
D. 机器学习算法中的SVM和聚类算法
1.机器学习算法——SVM
这种算法就是支持向量机,而支持向量机算法是诞生于统计学习界,这也是机器学习中的经典算法,而支持向量机算法从某种意义上来说是逻辑回归算法的强化,这就是通过给予逻辑回归算法更严格的优化条件,支持向量机算法可以获得比逻辑回归更好的分类界线。不过如果通过跟高斯核的结合,支持向量机可以表达出非常复杂的分类界线,从而达成很好的的分类效果。核事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空间。
2.机器学习算法——聚类算法
前面的算法中的一个显着特征就是训练数据中包含了标签,训练出的模型可以对其他未知数据预测标签。在下面的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。这类算法有一个统称,即无监督算法。无监督算法中最典型的代表就是聚类算法。而聚类算法中最典型的代表就是K-Means算法。这一算法被广大朋友所应用。
想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。“CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门 从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,推动科技创新进步,助力经济持续发展。点击预约免费试听课。
E. 机器学习有哪些算法
1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。
想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。
F. 机器学习中需要掌握的算法有哪些
在学习机器学习中,我们需要掌握很多算法,通过这些算法我们能够更快捷地利用机器学习解决更多的问题,让人工智能实现更多的功能,从而让人工智能变得更智能。因此,本文为大家介绍一下机器学习中需要掌握的算法,希望这篇文章能够帮助大家更深入地理解机器学习。
首先我们为大家介绍的是支持向量机学习算法。其实支持向量机算法简称SVM,一般来说,支持向量机算法是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。而支持向量机算法那分为两类,第一就是线性SVM。在线性SVM中,训练数据必须通过超平面分离分类器。第二就是非线性SVM,在非线性SVM中,不可能使用超平面分离训练数据。
然后我们给大家介绍一下Apriori机器学习算法,需要告诉大家的是,这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。Apriori机器学习算法工作的基本原理就是如果项目集频繁出现,则项目集的所有子集也经常出现。
接着我们给大家介绍一下决策树机器学习算法。其实决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。
而随机森林机器学习算法也是一个重要的算法,它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。
在这篇文章中我们给大家介绍了关于机器学习的算法,具体包括随机森林机器学习算法、决策树算法、apriori算法、支持向量机算法。相信大家看了这篇文章以后对机器学习有个更全面的认识,最后祝愿大家都学有所成、学成归来。
G. 机器学习中常用的方法有什么
机器学习中常用的方法有LR,SVM,集成学习,贝叶斯
H. 机器学习可以完成哪些任务,列举出每种任务的常见算法。
机器学习完成的任务好多。
1.分拣。进行不同物品的分拣。大多是使用传感器进行识别和分拣。
2.排序。将已知的散乱数据进行有规律的排序,一般使用对比,冒泡排序法。
3.人脸识别。通过记录人体面部的一些特征,存入数据库,对比查找进行识别。
I. 常用机器学习方法有哪些
机器学习中常用的方法有:
(1) 归纳学习
符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。
函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。
(2) 演绎学习
(3) 类比学习:典型的类比学习有案例(范例)学习。
(4) 分析学习:典型的分析学习有解释学习、宏操作学习。
(9)机器学习相关算法扩展阅读:
机器学习常见算法:
1、决策树算法
决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。
2、朴素贝叶斯算法
朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。
3、支持向量机算法
基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。
J. 机器学习有几种算法
1. 线性回归
工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。
2. 逻辑回归
根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。
3. 决策树
利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。
4. 支持向量机(SVM)
基本原理(以二维数据为例):如果训练数据是分布在二维平面上的点,它们按照其分类聚集在不同的区域。基于分类边界的分类算法的目标是,通过训练,找到这些分类之间的边界(直线的――称为线性划分,曲线的――称为非线性划分)。对于多维数据(如N维),可以将它们视为N维空间中的点,而分类边界就是N维空间中的面,称为超面(超面比N维空间少一维)。线性分类器使用超平面类型的边界,非线性分类器使用超曲面。
5. 朴素贝叶斯
朴素贝叶斯认为每个特征都是独立于另一个特征的。即使在计算结果的概率时,它也会考虑每一个单独的关系。
它不仅易于使用,而且能有效地使用大量的数据集,甚至超过了高度复杂的分类系统。
6. KNN(K -最近邻)
该算法适用于分类和回归问题。在数据科学行业中,它更常用来解决分类问题。
这个简单的算法能够存储所有可用的案例,并通过对其k近邻的多数投票来对任何新事件进行分类。然后将事件分配给与之匹配最多的类。一个距离函数执行这个测量过程。
7. k – 均值
这种无监督算法用于解决聚类问题。数据集以这样一种方式列在一个特定数量的集群中:所有数据点都是同质的,并且与其他集群中的数据是异构的。
8. 随机森林
利用多棵决策树对样本进行训练并预测的一种分类器被称为随机森林。为了根据其特性来分类一个新对象,每棵决策树都被排序和分类,然后决策树投票给一个特定的类,那些拥有最多选票的被森林所选择。
9. 降维算法
在存储和分析大量数据时,识别多个模式和变量是具有挑战性的。维数简化算法,如决策树、因子分析、缺失值比、随机森林等,有助于寻找相关数据。
10. 梯度提高和算法
这些算法是在处理大量数据,以作出准确和快速的预测时使用的boosting算法。boosting是一种组合学习算法,它结合了几种基本估计量的预测能力,以提高效力和功率。
综上所述,它将所有弱或平均预测因子组合成一个强预测器。