qq密码算法
⑴ QQ密码的哈希算法怎样得到求大神帮助
Hash,一般翻译做“散列”,也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射, pre--mage),通过散列算法,变换成固定长度的输出,该输出就是散列值。 这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能 会散列成相同的输出,而不可能从散列值来唯一的确定输入值。 数学表述为:h = H(M) ,其中H( )--单向散列函数,M--任意长度明文,h--固定长度散列值。 在信息安全领域中应用的Hash算法,还需要满足其他关键特性: 第一当然是单向性(one-way),从预映射,能够简单迅速的得到散列值,而在计算上不可能 构造一个预映射,使其散列结果等于某个特定的散列值,即构造相应的M=H-1(h)不可行。这样,散列值就能在统计上唯一的表征输入值,因此,密码学上的 Hash 又被称为"消息摘要(message digest)",就是要求能方便的将"消息"进行"摘要",但在"摘要"中无法得到比"摘要"本身更多的关于"消息"的信息。 第二是抗冲突性(collision-resistant),即在统计上无法产生2个散列值相同的预映射。 给定M,计算上无法找到M',满足H(M)=H(M') ,此谓弱抗冲突性;计算上也难以寻找一对任意的M和M',使满足H(M)=H(M') ,此谓强抗冲突性。要求"强抗冲突性"主要是为了防范 所谓"生日攻击(birthday attack)",在一个10人的团体中,你能找到和你生日相同的人的概率是2.4%,而在同一团体中,有2人生日相同的概率是11.7%。类似的,当预映射的空间很大的情况下,算法必须有足够的强度来保证不能轻易找到"相同生日"的人。 第三是映射分布均匀性和差分分布均匀性,散列结果中,为 0 的 bit 和为 1 的 bit ,其总数应该大致相等;输入中一个 bit 的变化,散列结果中将有一半以上的 bit 改变,这又叫做"雪崩效应(avalanche effect)";要实现使散列结果中出现 1bit 的变化,则输入中至少有一半以上的 bit 必须发生变化。其实质是必须使输入中每一个 bit 的信息, 尽量均匀的反映到输出的每一个 bit 上去;输出中的每一个 bit,都是输入中尽可能多 bit 的信息一起作用的结果。Damgard 和 Merkle 定义了所谓“压缩函数(compression function)”,就是将一个固定长度输入,变换成较短的固定长度的输出,这对密码学实践上 Hash 函数的设计产生了很大的影响。Hash函数就是被设计为基于通过特定压缩函数的不断重复“压缩”输入的分组和前一次压缩处理的结果的过程,直到整个消息都被压缩完毕,最后的输出作为整个消息的散列值。尽管还缺乏严格的证明,但绝大多数业界的研究者都同意,如果压缩函数是安全的,那么以上述形式散列任意长度的消息也将是安全的。这就是所谓Damgard/Merkle 任意长度的消息被分拆成符合压缩函数输入要求的分组,最后一个分组可能需要在末尾添上特定的填充字节,这些分组将被顺序处理,除了第一个消息分组将与散列初始化值一起作为压缩函数的输入外,当前分组将和前一个分组的压缩函数输出一起被作为这一次压缩的输入,而其输出又将被作为下一个分组压缩函数输入的一部分,直到最后一个压缩函数的输出,将被作为整个消息散列的结果。 MD5 和 SHA1 可以说是目前应用最广泛的Hash算法,而它们都是以 MD4 为基础设计的。 链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。 设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash链表的构造和冲突的不同实现方法对效率当然有一定的影 响,然而Hash函数是Hash链表最核心的部分,下面是几款经典软件中使用到的字符串Hash函数实现,通过阅读这些代码,我们可以在Hash算法的执行效 率、离散性、空间利用率等方面有比较深刻的了解。 下面分calc_hashnr_caseup(const byte *key,uint length) { register uint nr=1, nr2=4; html
⑵ QQ密码加密原理
QQ2005 贺岁版登录口令加密算法及其源代码http://www.cnhello.com Binny([email protected]) 2005-12-11 3:27:33 查看: 次 星级: 文字大小: 较大 正常 较小 收藏此页到365Key 收藏此页到新浪ViVi 【导读】拿到QQ 2005贺岁版后,发现其加密原理并没有新的改变,经过跟踪和分析,编制出暴力破解本地QQ密码的程序。QQ密码在正确登陆后,会将加密的结果保存在用户目录的ewh.db文件中,加密采用公开的MD5算法,通过N次循环以及异或后求反,最终计算出加密的结果,与用户的ewh.db文件中的密文比较后,发出“输入密码与上次成功登录的密码不一致,$0A是否到服务器验证?”(这条信息在BasicCtrlDll.dll的资源中,$0A在C的格式化中为回车)。根据这个提示,完成本地QQ密码的暴力破解。 拿到QQ 2005贺岁版后,发现其加密原理并没有新的改变,经过跟踪和分析,编制出暴力破解本地QQ密码的程序。
QQ密码在正确登陆后,会将加密的结果保存在用户目录的ewh.db文件中,加密采用公开的MD5算法,通过N次循环以及异或后求反,最终计算出加密的结果,与用户的ewh.db文件中的密文比较后,发出“输入密码与上次成功登录的密码不一致,$0A是否到服务器验证?”(这条信息在BasicCtrlDll.dll的资源中,$0A在C的格式化中为回车)。根据这个提示,完成本地QQ密码的暴力破解。
在QQ系统中,“QD”标志代表QQ Data,例如,我们可以在文件User.db或ewh.db中找到这个以QD开头的数据结构。
一、 ewh.db原始数据
51 44 01 01 03 00 04 03 00 BD AF A8 04 00 00 00
00 2E 06 00 07 03 00 B9 AB B4 10 00 00 00 07 22
AA 96 56 19 A3 9E 82 19 B7 2B BD 2D 34 4A 04 03
00 A9 B5 B2 04 00 00 00 3C A8 93 06
其中,红色为AST循环次数,兰色为EWH加密字符串,绿色为UIN QQ号(110340156=0x0693A83C,Intel体系内存中排列顺序为:3CA89306)。
二、 ewh.db数据结构
HEX
偏移 DEC
偏移 数据 注释 变量
标志
0000 1 51 44 QD,QQ Data 数据标志 Flag
0002 3 01 01 保留的数据结构 Reserve
0004 5 03 00 总数据段(Data Sections)的个数 Sections
0006 7 04 第一个数据段(简称1S,下同)的类型,可以从0x01到0x0F,04代表本数据没经过加密处理。 Type1S
0007 8 03 00 1S标志的长度。 LenFlag1S
0009 10 BD AF A8 1S标志(例如AST、UIN、EWH等),是经过简单的异或并求反计算处理的,此处是AST,可能是Algorithm Shift Times 或Axxx Switch Time,管他的呢! Flag1S
000C 13 04 00 00 00 1S数据的长度 LenData1S
0010 17 00 2E 06 00
= (404992) 1S数据,这里是进行MD5转换的次数。
这个数据是同计算机的性能有关的,性能越高的计算机,在QQ注册成功后产生的这个循环控制变量就越大。 Data1S
0014 21 07 2S数据的类型,07代表使用MD5进行加密 Type2S
0015 22 03 00 2S标志的长度 LenFlag2S
0017 24 B9 AB B4 2S标志,此处是EWH,代表本数据段是EWH密码数据,可能是Encrypt With Hash的缩写 Flag2S
001A 27 10 00 00 00 2S数据的长度 LenData2S
001E 31 07 22 AA 96
56 19 A3 9E
82 19 B7 2B
BD 2D 34 4A 2S数据,是经过MD5加密计算后产生的数据,当然还要经过异或并求反的计算处理,参考下面程序中的1000B858 行代码。 Data2S
002E 47 04 3S数据的类型 Type3S
002F 48 03 00 3S标志的长度 LenFlag3S
0031 50 A9 B5 B2 3S标志,此处是UIN,代表本数据段是QQ号码,可能是:User Identifier Number的缩写 Flag3S
0034 53 04 00 00 00 3S数据的长度 LenData3S
0038 57 3C A8 93 06 3S数据,3C A8 93 06 = 110340156 Data3S
三、 加密原理
下面VB伪代码的部分符号引自以上第二点《结构说明》中的变量标志,请注意理解:
Pwd = MD5(Pwd, Len(Pwd)) ' Pwd为用户输入的密码,第一轮MD5后,Pwd成为16位字节长度的MD5串。
XorKey As Long = 0 'XorKey为用于解密的字节
For k = 1 To Data1S – 1 '因为前面已经做过一轮,所以此处要减一
Pwd = MD5(Pwd, 16)
Next k
XorKey = XorKey And &HFFFF
XorKey = (LenData2S And &HFF) Xor (LenData2S \ 256)
XorKey = &HFF - XorKey '求反
For k = 1 To 16
Pwd(k) = Pwd(k) Xor XorKey
Next k
If Pwd <> Data2S Then
MsgBox "输入密码与上次成功登录的密码不一致," & vbcrlf & "是否到服务器验证?"
End If
通过以上的流程,我真的佩服QQ的设计者,如此巨大的循环量,加上循环次数的随机性,如果希望产生一个QQ MD5词典简直不可能。虽然理论上,可以产生一个MD5字典,但是,这个字典将有1.15E+77*16个字节之巨,因此,只好根据ewh.db文件提供的数据暴力破解了,不知是不是有更好的方法呢?
不过我的感觉是,循环次数加多了,应该会产生更多的MD5碰撞,不见得是个好事。
还有一种破解思路,也许更加直接,将在后面的文章中详细探讨。但是我只有在有时间做完实验后才有资格评述,不在本文章的讨论范围内。
四、 破解算法
重复进行数十万次MD5加密,会消耗计算机很多时间,如果使用传统的VB或VC,对于一个密码的等待时间也是很可观的(例如使用VB代码,消耗的时间可能是汇编的400倍),因此,我使用汇编语言来编制低层加密解密算法,通过MASM32编译连接,最后用高级语言调用。通过提供算法动态库的方式,方便其他有兴趣的读者自己增加丰富的功能。例如增加多线程等,这也将在以后的探讨中实现。在此不做深入讨论。
附带的例子为VB和VC调用汇编语言动态库的例子,VB代码简单实现了通过密码字典进行单线程破解的功能,读者可以丰富其内容。增加更多的功能。
五、 QQ数据结构分析
下面为动态库BasicCtrlDll.dll中反汇编的代码以及代码分析,主要用于分析EWH.DB中数据结构以及QQ数据解调算法的问题。另外,这个算法也可以将User.db中的数据提取出来。深入研究下去,做一个聊天记录查看器之类的软件也非难事。
1000B71D B8 AC160110 mov eax,BasicCtr.100116AC
1000B722 E8 89460000 call BasicCtr.1000FDB0
1000B727 83EC 3C sub esp,3C
1000B72A 8B45 08 mov eax,dword ptr ss:[ebp+8] 将数据的开始地址赋给EAX,实际数据为**Data,EAX=*Data
1000B72D 53 push ebx
1000B72E 56 push esi
1000B72F 57 push edi
1000B730 8B30 mov esi,dword ptr ds:[eax] 需要转换的字符串,EAX指示一个结构,第一个成员为实际的数据指针
1000B732 894D D8 mov dword ptr ss:[ebp-28],ecx 局部变量[ebp-28]保存全局的标志结构,ECX为全局参数地址,在调用本函数时跟入
1000B735 8B46 F8 mov eax,dword ptr ds:[esi-8] 为CString结构中长度的成员,表示总共多少个字节
1000B738 83F8 06 cmp eax,6 如果长度小于6,则为无效的数据
1000B73B 0F82 81020000 jb BasicCtr.1000B9C2 如果比6小则跳转退出,说明数据量不够解调的
1000B741 803E 51 cmp byte ptr ds:[esi],51 是否为 QQ Data 的数据,QD为QQ数据标志
1000B744 0F85 78020000 jnz BasicCtr.1000B9C2
1000B74A 807E 01 44 cmp byte ptr ds:[esi+1],44
1000B74E 0F85 6E020000 jnz BasicCtr.1000B9C2
1000B754 66:8B7E 04 mov di,word ptr ds:[esi+4] 对于EWH来说,为第4+1个字节,为0003
1000B758 83C6 04 add esi,4 指向数据段(Sections)的个数
1000B75B 46 inc esi
1000B75C 83C0 FA add eax,-6 EAX去掉6个字节,对于EWH来说,剩下36H个字节
1000B75F 46 inc esi
1000B760 8945 08 mov dword ptr ss:[ebp+8],eax 指向第一个数据段
1000B763 E8 CE050000 call BasicCtr.1000BD36 在内存(ECX+9C)处开辟一个(100H)字节的空间,空间地址返回到EAX
1000B768 8365 E0 00 and dword ptr ss:[ebp-20],0 局部变量[ebp-20]清零
1000B76C 0FB7C7 movzx eax,di 转换到EAX,对于EWH,di=3。表示有3段数据
1000B76F 85C0 test eax,eax
1000B771 8945 B8 mov dword ptr ss:[ebp-48],eax 局部变量[ebp-48]保存数据的段数
1000B774 0F8E 21020000 jle BasicCtr.1000B99B
1000B77A 837D 08 07 cmp dword ptr ss:[ebp+8],7 如果整个长度小于7,则剩下的应该是QQ号了。第一次进入时=36H
1000B77E 0F82 3E020000 jb BasicCtr.1000B9C2 如果剩余的数据长度小于7则退出
1000B784 8A06 mov al,byte ptr ds:[esi] 第一次进入时,ESI指向第7个数据即数据段的类型,例如 04
1000B786 66:8B4E 01 mov cx,word ptr ds:[esi+1] CX=后一个数据,及数据段标志的长度,例如 0003
1000B78A 46 inc esi
1000B78B 8B55 08 mov edx,dword ptr ss:[ebp+8] 剩余的数据长度,如36H
1000B78E 836D 08 03 sub dword ptr ss:[ebp+8],3 去掉3个,例如成为33H=51
1000B792 894D C8 mov dword ptr ss:[ebp-38],ecx 局部变量[ebp-38]保存数据段中标志长度
1000B795 0FB7F9 movzx edi,cx EDI为标志长度了
1000B798 46 inc esi
1000B799 8845 E4 mov byte ptr ss:[ebp-1C],al 局部变量[ebp-1C]保存本段的类型
1000B79C 8D4F 04 lea ecx,dword ptr ds:[edi+4] ECX为取得的标志长度再加上4,例如=7
1000B79F 46 inc esi 第一次时,ESI指向第一个数据段的标志字段了,例如指向BDAFA8,第9个数据开始
1000B7A0 394D 08 cmp dword ptr ss:[ebp+8],ecx 如果剩余的数据比“标志长度+4”还少,则没有数据,因此不进行处理
1000B7A3 0F82 19020000 jb BasicCtr.1000B9C2
1000B7A9 8B0C37 mov ecx,dword ptr ds:[edi+esi] 跳过数据段的标志部分,将数据段的长度赋值给ECX。例如[edi+esi]=4
1000B7AC 8D1C37 lea ebx,dword ptr ds:[edi+esi] EBX保存新的指针,指向数据段中数据部分的长度部分,例如,[EBX]=4
1000B7AF 895D C4 mov dword ptr ss:[ebp-3C],ebx 局部变量[ebp-3C]保存数据段中数据部分的长度指针
1000B7B2 8D4C0F 07 lea ecx,dword ptr ds:[edi+ecx+7] 从标志(自身长3,加上4个长度位=7)开始,加上数据长度,为完整数据长度。例如E
1000B7B6 3BCA cmp ecx,edx 如果剩下的数据长度(如36H)不够,则退出
1000B7B8 894D CC mov dword ptr ss:[ebp-34],ecx 局部变量[ebp-34]保存本数据段的总长度
1000B7BB 0F87 01020000 ja BasicCtr.1000B9C2 如果小于则退出程序
1000B7C1 8365 F0 00 and dword ptr ss:[ebp-10],0 局部变量[ebp-10]清零
1000B7C5 3C 01 cmp al,1 al保存本段的类型,有效的类型是4或7
1000B7C7 74 18 je short BasicCtr.1000B7E1
1000B7C9 3C 02 cmp al,2
1000B7CB 74 14 je short BasicCtr.1000B7E1
1000B7CD 3C 03 cmp al,3
1000B7CF 74 10 je short BasicCtr.1000B7E1
1000B7D1 3C 04 cmp al,4
1000B7D3 74 0C je short BasicCtr.1000B7E1
1000B7D5 3C 05 cmp al,5
1000B7D7 74 08 je short BasicCtr.1000B7E1
1000B7D9 3C 07 cmp al,7
1000B7DB 74 04 je short BasicCtr.1000B7E1
1000B7DD 3C 06 cmp al,6
1000B7DF 75 19 jnz short BasicCtr.1000B7FA
1000B7E1 51 push ecx 为本段的总长度,包括(段类型+标志长度+标志+数据长度+数据),例如,对于密码段=1AH
1000B7E2 E8 23430000 call <MFC42.operator new>
1000B7E7 FF75 CC push dword ptr ss:[ebp-34] n=[ebp-34],局部变量[ebp-34]保存本数据段的总长度
1000B7EA 8D4E FD lea ecx,dword ptr ds:[esi-3] [esi-3]指向本段的开始(从段类型算起)
1000B7ED 8945 F0 mov dword ptr ss:[ebp-10],eax 局部变量[ebp-10]保存拷贝后的数据
1000B7F0 51 push ecx src
1000B7F1 50 push eax dest
1000B7F2 E8 E5450000 call <MSVCRT.memcpy> memcpy,将本段的整段数据拷贝到新的地方,数据指针保存在局部变量[ebp-10]中
1000B7F7 83C4 10 add esp,10
1000B7FA 8B45 C8 mov eax,dword ptr ss:[ebp-38] 局部变量[ebp-38]保存数据段中标志长度
1000B7FD 33C9 xor ecx,ecx
1000B7FF 32C4 xor al,ah 将低位长度与高位异或,例如3 xor 0=3
1000B801 85FF test edi,edi EDI为标志位的长度
1000B803 76 12 jbe short BasicCtr.1000B817 如果本段没有段标志,则跳转
1000B805 8A1431 mov dl,byte ptr ds:[ecx+esi] 开始循环,循环次数为标志的长度。 ECX第一次时为0,将第一个数据加载到DL中。
1000B808 32D0 xor dl,al AL为长度的高位和低位的异或,这里为3
1000B80A F6D2 not dl DL=NOT ([数据] xor [数据段标志长度的高位 xor 数据段标志长度的低位])
1000B80C 881431 mov byte ptr ds:[ecx+esi],dl 数据保存在原始的内存中相应的地方
1000B80F 41 inc ecx
1000B810 3BCF cmp ecx,edi
1000B812 72 F1 jb short BasicCtr.1000B805
1000B814 8B5D C4 mov ebx,dword ptr ss:[ebp-3C] 局部变量[ebp-3C]保存数据段中数据部分的长度指针
1000B817 57 push edi EDI为标志位的长度
1000B818 56 push esi ESI为指向解密以后的数据,例如AST
1000B819 8D4D E8 lea ecx,dword ptr ss:[ebp-18] 局部变量[ebp-18]存放强制类型转换以后的数据指针的指针,例如AST
1000B81C E8 5B430000 call <MFC42.CString::CString> 将解密后的数据变成CString类型。返回的类型放在EAX指示的地址中
1000B821 8365 FC 00 and dword ptr ss:[ebp-4],0 局部变量[ebp-4]清零
1000B825 6A FC push -4
1000B827 58 pop eax EAX=-4=FFFFFFFC
1000B828 8BF3 mov esi,ebx ebx保存数据段中数据部分的长度指针
1000B82A 2BC7 sub eax,edi EAX=EAX-EDI=FFFFFFFC-3=FFFFFFF9
1000B82C 8B1E mov ebx,dword ptr ds:[esi] ebx为数据段中数据部分的长度了
1000B82E 0145 08 add dword ptr ss:[ebp+8],eax 第一次时,[EBP+8]=33。执行后=2C,相当于33H-7H=2CH
1000B831 83C6 04 add esi,4 ESI指向数据段中的数据部分了
1000B834 395D 08 cmp dword ptr ss:[ebp+8],ebx [ebp+8]=2C,ebx=4
1000B837 0F82 6A010000 jb BasicCtr.1000B9A7
1000B83D 807D E4 07 cmp byte ptr ss:[ebp-1C],7 局部变量[ebp-1C]保存本段的类型, 4或者7
1000B841 74 06 je short BasicCtr.1000B849
1000B843 807D E4 06 cmp byte ptr ss:[ebp-1C],6 如果类型不为6,则执行1000B862
1000B847 75 19 jnz short BasicCtr.1000B862
1000B849 8AC3 mov al,bl 如果数据段的类型为7,则执行此语句。BL包含本段的长度
1000B84B 33FF xor edi,edi
1000B84D 32C7 xor al,bh al=(长度的低位 xor 长度的高位)
1000B84F 85DB test ebx,ebx
1000B851 76 0F jbe short BasicCtr.1000B862 如果长度为0,则表示没有密码
1000B853 8A0C37 mov cl,byte ptr ds:[edi+esi]
1000B856 32C8 xor cl,al
1000B858 F6D1 not cl DL=NOT ([数据] xor [数据段标志长度的高位xor 数据段标志长度的低位])
1000B85A 880C37 mov byte ptr ds:[edi+esi],cl
1000B85D 47 inc edi
1000B85E 3BFB cmp edi,ebx
1000B860 72 F1 jb short BasicCtr.1000B853 循环直到全部数据解调完毕
1000B862 53 push ebx 数据串的长度
1000B863 56 push esi 原始的需要变换的数据
1000B864 8D4D EC lea ecx,dword ptr ss:[ebp-14] 局部变量[ebp-14]存放强制CString类型转换以后的数据指针的指针,例如DB2E0600
1000B867 E8 10430000 call <MFC42.CString::CString>
1000B86C 8A45 E4 mov al,byte ptr ss:[ebp-1C] 局部变量[ebp-1C]保存本段的类型,4或者7
1000B86F 295D 08 sub dword ptr ss:[ebp+8],ebx 去掉已经处理的数据,执行后 [ebp+8]=28H,ebx为数据段中数据部分的长度
1000B872 03F3 add esi,ebx ESI指向下一个数据段的开始部分,ebx保存数据段中数据部分的长度指针
1000B874 33FF xor edi,edi
1000B876 84C0 test al,al 测试本段的类型是否为0
1000B878 C645 FC 01 mov byte ptr ss:[ebp-4],1 局部布尔型变量[ebp-4]=1
1000B87C 0F86 A3010000 jbe BasicCtr.1000BA25 如果本段的数据类型为0,则执行 1000BA25后退出
1000B882 3C 07 cmp al,7
1000B884 0F86 B6000000 jbe BasicCtr.1000B940 如果小于等于7,则跳转到1000B940执行。对于EWH来说就是这样
1000B88A 3C 08 cmp al,8
1000B88C 0F84 74010000 je BasicCtr.1000BA06 如果数据类型为8,则直接退出。
1000B892 3C 09 cmp al,9
1000B894 74 5D je short BasicCtr.1000B8F3
1000B896 3C 0A cmp al,0A
1000B898 0F85 87010000 jnz BasicCtr.1000BA25
1000B89E 8B4D D8 mov ecx,dword ptr ss:[ebp-28] 当数据类型为A时,执行本程序代码
1000B8A1 8D45 D4 lea eax,dword ptr ss:[ebp-2C]
1000B8A4 50 push eax
1000B8A5 E8 47FEFFFF call BasicCtr.1000B6F1
1000B8AA 8B45 D4 mov eax,dword ptr ss:[ebp-2C]
1000B8AD FF75 EC push dword ptr ss:[ebp-14]
1000B8B0 8B08 mov ecx,dword ptr ds:[eax]
1000B8B2 53 push ebx
1000B8B3 50 push eax
1000B8B4 FF91 BC000000 call dword ptr ds:[ecx+BC]
1000B8BA 8BD8 mov ebx,eax
1000B8BC 85DB test ebx,ebx
1000B8BE 0F85 12010000 jnz BasicCtr.1000B9D6
1000B8C4 8B45 D4 mov eax,dword ptr ss:[ebp-2C]
1000B8C7 6A 04 push 4
1000B8C9 8945 DC mov dword ptr ss:[ebp-24],eax
1000B8CC 8D45 DC lea eax,dword ptr ss:[ebp-24]
1000B8CF 50 push eax
1000B8D0 8D4D C0 lea ecx,dword ptr ss:[ebp-40]
1000B8D3 E8 A4420000 call <MFC42.CString::CString>
1000B8D8 50 push eax
1000B8D9 8D4D EC lea ecx,dword ptr ss:[ebp-14]
1000B8DC C645 FC 03 mov byte ptr ss:[ebp-4],3
1000B8E0 E8 C3400000 call <MFC42.CString::operator=>
1000B8E5 C645 FC 01 mov byte ptr ss:[ebp-4],1
1000B8E9 8D4D C0 lea ecx,dword ptr ss:[ebp-40]
1000B8EC E8 AB400000 call <MFC42.CString::~CString>
1000B8F1 EB 50 jmp short BasicCtr.1000B943
1000B8F3 8B4D D8 mov ecx,dword ptr ss:[ebp-28] 当数据类型为9时,执行这个操作
1000B8F6 8D45 D0 lea eax,dword ptr ss:[ebp-30]
1000B8F9 50 push eax
1000B8FA E8 4E180000 call BasicCtr.1000D14D
1000B8FF 8B45 D0 mov eax,dword ptr ss:[ebp-30]
1000B902 FF75 EC push dword ptr ss:[ebp-14]
1000B905 8B08 mov ecx,dword ptr ds:[eax]
1000B907 53 push ebx
1000B908 50 push eax
1000B909 FF51 78 call dword ptr ds:[ecx+78]
1000B90C 8BD8 mov ebx,eax
1000B90E 85DB test ebx,ebx
1000B910 0F85 D4000000 jnz BasicCtr.1000B9EA
1000B916 8B45 D0 mov eax,dword ptr ss:[ebp-30]
1000B919 6A 04 push 4
1000B91B 8945 DC mov dword ptr ss:[ebp-24],eax
1000B91E 8D45 DC lea eax,dword ptr ss:[ebp-24]
1000B921 50 push eax
1000B922 8D4D BC lea ecx,dword ptr ss:[ebp-44]
1000B925 E8 52420000 call <MFC42.CString::CString>
1000B92A 50 push eax
1000B92B 8D4D EC lea ecx,dword ptr ss:[ebp-14]
1000B92E C645 FC 02 mov byte ptr ss:[ebp-4],2
1000B932 E8 71400000 call <MFC42.CString::operator=>
1000B937 C645 FC 01 mov byte ptr ss:[ebp-4],1
1000B93B 8D4D BC lea ecx,dword ptr ss:[ebp-44]
1000B93E EB AC jmp short BasicCtr.1000B8EC
1000B940 6A 01 push 1 当数据段的类型<=7时,直接从此处执行
1000B942 5F pop edi
1000B943 8B5D D8 mov ebx,dword ptr ss:[ebp-28] 局部变量[ebp-28]保存全局的标志结构
1000B946 8D45 EC lea eax,dword ptr ss:[ebp-14] 局部变量[ebp-14]存放强制类型转换以后的数据指针的指针,例如DB2E0600
1000B949 50 push eax EAX存放强制类型转换以后的数据指针
1000B94A 8D45 E8 lea eax,dword ptr ss:[ebp-18] 局部变量[ebp-18]存放强制类型转换以后的数据指针的指针,例如AST
1000B94D FF75 E4 push dword ptr ss:[ebp-1C] 局部变量[ebp-1C]中的第一个字节保存本段的类型,4或者7
1000B950 8BCB mov ecx,ebx
1000B952 50 push eax
1000B953 E8 B4FCFFFF call BasicCtr.1000B60C call 1000B60C(CString,Flag,CString)
1000B958 85FF test edi,edi
1000B95A 74 18 je short BasicCtr.1000B974
1000B95C 8B45 E0 mov eax,dword ptr ss:[ebp-20] 局部变量[ebp-28]第一次为0,为一个计数器
1000B95F 8B4B 64 mov ecx,dword ptr ds:[ebx+64] 存在于标志结构中,为一个全局地址
1000B962 8B55 F0 mov edx,dword ptr ss:[ebp-10] 局部变量[ebp-10]保存拷贝后的数据,即没有经过处理的。例如040300BDAF……
1000B965 C1E0 02 shl eax,2 EAX=EAX*2
1000B968 891401 mov dword ptr ds:[ecx+eax],edx 将未做解调的原始数据放到全局结构中某个指针指示的内存中
1000B96B 8B4B 78 mov ecx,dword ptr ds:[ebx+78] 存在于标志结构中,为一个全局地址
1000B96E 8B55 CC mov edx,dword ptr ss:[ebp-34] 局部变量[ebp-34]保存本数据段的总长度
1000B971 891401 mov dword ptr ds:[ecx+eax],edx 将数据长度放到全局结构中某个指针指示的内存中
1000B974 8065 FC 00 and byte ptr ss:[ebp-4],0 局部布尔型变量[ebp-4]=0
1000B978 8D4D EC lea ecx,dword ptr ss:[ebp-14]
1000B97B E8 1C400000 call <MFC42.CString::~CString> 清除数据段中的数据部分CString
1000B980 834D FC FF or dword ptr ss:[ebp-4],FFFFFFFF 局部布尔型变量[ebp-4]=-1,为True
1000B984 8D4D E8 lea ecx,dword ptr ss:[ebp-18]
1000B987 E8 10400000 call <MFC42.CString::~CString> 清除数据段中的标志部分CString,例如AST
1000B98C FF45 E0 inc dword ptr ss:[ebp-20] 局部变量[ebp-28]计数器加一
1000B98F 8B45 E0 mov eax,dword ptr ss:[ebp-20]
1000B992 3B45 B8 cmp eax,dword ptr ss:[ebp-48] 局部变量[ebp-48]保存数据的段数
1000B995 0F8C DFFDFFFF jl BasicCtr.1000B77A 循环解调每个数据段
1000B99B 8B45 08 mov eax,dword ptr ss:[ebp+8] 最后剩余的长度
1000B99E F7D8 neg eax
1000B9A0 1BC0 sbb eax,eax
1000B9A2 83E0 04 and eax,4
1000B9A5 EB 1E jmp short BasicCtr.1000B9C5
1000B9A7 837D F0 00 cmp dword ptr ss:[ebp-10],0
1000B9AB 74 09 je short BasicCtr.1000B9B6
1000B9AD FF75 F0 push dword ptr ss:[ebp-10]
1000B9B0 E8 FF3F0000 call <MFC42.operator delete>
1000B9B5 59 pop ecx
1000B9B6 834D FC FF or dword ptr ss:[ebp-4],FFFFFFFF
1000B9BA 8D4D E8 lea ecx,dword ptr ss:[ebp-18]
1000B9BD E8 DA3F0000 call <MFC42.CString::~CString>
1000B9C2 6A 04 push 4
1000B9C4 58 pop eax
1000B9C5 8B4D F4 mov ecx,dword ptr ss:[ebp-C]
1000B9C8 5F pop edi
1000B9C9 5E pop esi
1000B9CA 5B pop ebx
1000B9CB 64:890D 000000 mov dword ptr fs:[0],ecx
1000B9D2 C9 leave
1000B9D3 C2 0400 retn 4
1000B9D6 837D F0 00 cmp dword ptr ss:[ebp-10],0
1000B9DA 74 09 je short BasicCtr.1000B9E5
1000B9DC FF75 F0 push dword ptr ss:[ebp-10]
1000B9DF E8 D03F0000 call <MFC42.operator delete>
1000B9E4 59 pop ecx
1000B9E5 8B45 D4 mov eax,dword ptr ss:[ebp-2C]
1000B9E8 EB 12 jmp short BasicCtr.1000B9FC
1000B9EA 837D F0 00 cmp dword ptr ss:[ebp-10],0
1000B9EE 74 09 je short BasicCtr.1000B9F9
1000B9F0 FF75 F0 push dword ptr ss:[ebp-10]
1000B9F3 E8 BC3F0000 call <MFC42.operator delete>
1000B9F8 59 pop ecx
1000B9F9 8B45 D0 mov eax,dword ptr ss:[ebp-30]
1000B9FC 8B08 mov ecx,dword ptr ds:[eax]
1000B9FE 50 push eax
1000B9FF FF51 08 call dword ptr ds:[ecx+8]
1000BA02 8BF3 mov esi,ebx
1000BA04 EB 03 jmp short BasicCtr.1000BA09
1000BA06 6A 04 push 4
1000BA08 5E pop esi
1000BA09 8065 FC 00 and byte ptr ss:[ebp-4],0
1000BA0D 8D4D EC lea ecx,dword ptr ss:[ebp-14]
1000
⑶ QQ密码加密原理是什么
一般只有加密码过程,没有解密。 用户登陆时,把他输入的密码经过加密 再拿去与数据库里面的密码比较就可以了。 修改密码也是一样的原理,输入的原密码加密后与数据库密码比较,符合的话再将新密码加密后存入数据库覆盖原密码 现在流行的MD5加密算法 网上有很多JAVA的MD5算法
⑷ QQ密码的加密方式是什么
密保卡和密保手机就可以了哈
⑸ QQ空间登陆加密密码算法是什么
QQ空间现在采用的是动态加密,加密结果和验证码有密切关系,
也就是说是:密码+算法+验证码在一起,加密算法如下:
public static string smethod_0(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
byte[] array = mD.ComputeHash(bytes);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append(b.ToString("x").PadLeft(2, '0'));
}
return stringBuilder.ToString().ToUpper();
}
public static byte[] EncyptMD5Bytes(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
return mD.ComputeHash(bytes);
}
public static string smethod_1(byte[] s)
{
MD5 mD = MD5.Create();
byte[] array = mD.ComputeHash(s);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append(b.ToString("x").PadLeft(2, '0'));
}
return stringBuilder.ToString().ToUpper();
}
public static string EncryptQQWebMd5(string s)
{
MD5 mD = MD5.Create();
byte[] bytes = Encoding.ASCII.GetBytes(s);
byte[] array = mD.ComputeHash(bytes);
StringBuilder stringBuilder = new StringBuilder();
byte[] array2 = array;
for (int i = 0; i < array2.Length; i++)
{
byte b = array2[i];
stringBuilder.Append("\\x");
stringBuilder.Append(b.ToString("x2"));
}
return stringBuilder.ToString();
}
public static string EncryptOld(string password, string verifyCode)
{
return smethod_0(EncyptMD5_3_16(password) + verifyCode.ToUpper());
}
public static string Encrypt(string qq, string password, string verifyCode)
{
return Encrypt((long)Convert.ToDouble(qq), password, verifyCode);
}
public class ByteBuffer
{
private byte[] byte_0;
public Stream BaseStream;
public ByteBuffer()
{
this.BaseStream = new MemoryStream();
this.byte_0 = new byte[16];
}
public virtual long Seek(int offset, SeekOrigin origin)
{
return this.BaseStream.Seek((long)offset, origin);
}
public bool Peek()
{
return this.BaseStream.Position < this.BaseStream.Length;
}
public byte[] ToByteArray()
{
//long position = this.BaseStream.Position;
//this.BaseStream.Position = 0L;
//byte[] array = new byte[(int)((object)((IntPtr)this.BaseStream.Length))];
//this.BaseStream.Read(array, 0, array.Length);
//this.BaseStream.Position = position;
//return array;
long position = this.BaseStream.Position;
this.BaseStream.Position = 0L;
byte[] buffer = new byte[this.BaseStream.Length];
this.BaseStream.Read(buffer, 0, buffer.Length);
this.BaseStream.Position = position;
return buffer;
}
public void Put(bool value)
{
this.byte_0[0] = value ? ((byte)1) : ((byte)0);
this.BaseStream.Write(this.byte_0, 0, 1);
}
public void Put(byte value)
{
this.BaseStream.WriteByte(value);
}
public void Put(byte[] value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
this.BaseStream.Write(value, 0, value.Length);
}
public void PutInt(int value)
{
this.PutInt((uint)value);
}
public void PutInt(uint value)
{
this.byte_0[0] = (byte)(value >> 24);
this.byte_0[1] = (byte)(value >> 16);
this.byte_0[2] = (byte)(value >> 8);
this.byte_0[3] = (byte)value;
this.BaseStream.Write(this.byte_0, 0, 4);
}
public void PutInt(int index, uint value)
{
int offset = (int)this.BaseStream.Position;
this.Seek(index, SeekOrigin.Begin);
this.PutInt(value);
this.Seek(offset, SeekOrigin.Begin);
}
public byte Get()
{
return (byte)this.BaseStream.ReadByte();
}
}
public static string Encrypt(long qq, string password, string verifyCode)
{
ByteBuffer byteBuffer = new ByteBuffer();
byteBuffer.Put(EncyptMD5Bytes(password));
byteBuffer.PutInt(0);
byteBuffer.PutInt((uint)qq);
EncryptQQWebMd5(password);
byte[] s = byteBuffer.ToByteArray();
string str = smethod_1(s);
return smethod_0(str + verifyCode.ToUpper());
}
上面的加密算法,调用方法是:string str = Encrypt(QQ号, QQ密码, 验证码);
加密后的密码会返回到str中,然后使用返回的密码进行登录。
注:QQ空间登录是采用的GET而不是POST。
⑹ 求QQ的各种密码加密算法。
未有详细研究过, 不过网页方式登录qq时, 加密算法都写在js里面了, 研究相应的js函数应该就可以.
我印象中似乎是先把密码md5_3处理, 加密出来的字串和验证码一起MD5. 而md5_3似乎比较纠结, 并不是单纯的进行3次MD5. 具体的你去抓js文件研究吧.
至于可逆不可逆根本就不是关键啦. 服务器端无需对加密串解密的, 直接拿密码以相同方式加密, 然后比较一下即可.