当前位置:首页 » 操作系统 » 快速匹配算法

快速匹配算法

发布时间: 2022-07-29 09:02:47

⑴ 一种基于图像灰度的快速匹配算法 怎么实现

1.框架搭建
1.1 将struts2中的jar文件导入到项目中
commons-fileupload-1.2.1.jar,commons-io-1.3.2.jar,freemarker-2.3.15.jar,ognl-2.7.3.jar
struts2-core-2.1.8.1.jar,xwork-core-2.1.6.jar
1.2 将struts.xml文件拷贝到项目的src目录下
1.3 修改web.xml文件
添加:
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>struts2</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
2.action中方法的调用方式
2.1 自动方法调用(只能调用execute)
2.2 指定方法调用(通过设置action标签中的method属性)
2.3 动态方法调用(在调用时,在action后加!方法名称,如:login!deletUser)
注意:<constant name="struts.enable.DynamicMethodInvocation" value="true" />
2.4 通配符调用
3. action接收客户端参数的方式
3.1 直接在action中定义参数变量,并生成set和get方法
3.2 定义接收参数的类
注意:都要为action的成员变量提供get和set方法
3.3 让action实现ModelDriven接口,并实现里面的getModel方法
4.获取request,session,application的方式
4.1 用ActionContext获取,实际上获取到的都是Map对象
4.2 用ServletActionContext获取,获取到的是基于Servlet API的对象
4.3 让action实现RequestAware,SessionAware,ApplicationAware接口,并实现里面的方法
5.四种转向
5.1 action转发到页面(默认)
5.2 action重定向到页面 <result type="redirect">
5.3 action转发到action <result type="chain">
<param name="actionName">login</param>
<param name="nameSpace">/login</param>
<param name="method">login</param>
</result>
5.4 action重定向到action <result type="redirectAction">login</result>

⑵ 有关匹配和排序的算法,高手帮帮忙哈

一、插入排序(Insertion Sort)
1. 基本思想:
每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。
2. 排序过程:
【示例】:
[初始关键字] [49] 38 65 97 76 13 27 49
J=2(38) [38 49] 65 97 76 13 27 49
J=3(65) [38 49 65] 97 76 13 27 49
J=4(97) [38 49 65 97] 76 13 27 49
J=5(76) [38 49 65 76 97] 13 27 49
J=6(13) [13 38 49 65 76 97] 27 49
J=7(27) [13 27 38 49 65 76 97] 49
J=8(49) [13 27 38 49 49 65 76 97]

Procere InsertSort(Var R : FileType);
//对R[1..N]按递增序进行插入排序, R[0]是监视哨//
Begin
for I := 2 To N Do //依次插入R[2],...,R[n]//
begin
R[0] := R[I]; J := I - 1;
While R[0] < R[J] Do //查找R[I]的插入位置//
begin
R[J+1] := R[J]; //将大于R[I]的元素后移//
J := J - 1
end
R[J + 1] := R[0] ; //插入R[I] //
end
End; //InsertSort //

二、选择排序
1. 基本思想:
每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49]
第一趟排序后 13 〔38 65 97 76 49 27 49]
第二趟排序后 13 27 〔65 97 76 49 38 49]
第三趟排序后 13 27 38 [97 76 49 65 49]
第四趟排序后 13 27 38 49 [49 97 65 76]
第五趟排序后 13 27 38 49 49 [97 97 76]
第六趟排序后 13 27 38 49 49 76 [76 97]
第七趟排序后 13 27 38 49 49 76 76 [ 97]
最后排序结果 13 27 38 49 49 76 76 97

Procere SelectSort(Var R : FileType); //对R[1..N]进行直接选择排序 //
Begin
for I := 1 To N - 1 Do //做N - 1趟选择排序//
begin
K := I;
For J := I + 1 To N Do //在当前无序区R[I..N]中选最小的元素R[K]//
begin
If R[J] < R[K] Then K := J
end;
If K <>; I Then //交换R[I]和R[K] //
begin Temp := R[I]; R[I] := R[K]; R[K] := Temp; end;
end
End; //SelectSort //

三、冒泡排序(BubbleSort)
1. 基本思想:
两两比较待排序数据元素的大小,发现两个数据元素的次序相反时即进行交换,直到没有反序的数据元素为止。
2. 排序过程:
设想被排序的数组R〔1..N〕垂直竖立,将每个数据元素看作有重量的气泡,根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R,凡扫描到违反本原则的轻气泡,就使其向上"漂浮",如此反复进行,直至最后任何两个气泡都是轻者在上,重者在下为止。
【示例】:
49 13 13 13 13 13 13 13
38 49 27 27 27 27 27 27
65 38 49 38 38 38 38 38
97 65 38 49 49 49 49 49
76 97 65 49 49 49 49 49
13 76 97 65 65 65 65 65
27 27 76 97 76 76 76 76
49 49 49 76 97 97 97 97

Procere BubbleSort(Var R : FileType) //从下往上扫描的起泡排序//
Begin
For I := 1 To N-1 Do //做N-1趟排序//
begin
NoSwap := True; //置未排序的标志//
For J := N - 1 DownTo 1 Do //从底部往上扫描//
begin
If R[J+1]< R[J] Then //交换元素//
begin
Temp := R[J+1]; R[J+1 := R[J]; R[J] := Temp;
NoSwap := False
end;
end;
If NoSwap Then Return//本趟排序中未发生交换,则终止算法//
end
End; //BubbleSort//

四、快速排序(Quick Sort)
1. 基本思想:
在当前无序区R[1..H]中任取一个数据元素作为比较的"基准"(不妨记为X),用此基准将当前无序区划分为左右两个较小的无序区:R[1..I-1]和R[I+1..H],且左边的无序子区中数据元素均小于等于基准元素,右边的无序子区中数据元素均大于等于基准元素,而基准X则位于最终排序的位置上,即R[1..I-1]≤X.Key≤R[I+1..H](1≤I≤H),当R[1..I-1]和R[I+1..H]均非空时,分别对它们进行上述的划分过程,直至所有无序子区中的数据元素均已排序为止。
2. 排序过程:
【示例】:
初始关键字 [49 38 65 97 76 13 27 49〕
第一次交换后 〔27 38 65 97 76 13 49 49〕
第二次交换后 〔27 38 49 97 76 13 65 49〕
J向左扫描,位置不变,第三次交换后 〔27 38 13 97 76 49 65 49〕
I向右扫描,位置不变,第四次交换后 〔27 38 13 49 76 97 65 49〕
J向左扫描 〔27 38 13 49 76 97 65 49〕
(一次划分过程)

初始关键字 〔49 38 65 97 76 13 27 49〕
一趟排序之后 〔27 38 13〕 49 〔76 97 65 49〕
二趟排序之后 〔13〕 27 〔38〕 49 〔49 65〕76 〔97〕
三趟排序之后 13 27 38 49 49 〔65〕76 97
最后的排序结果 13 27 38 49 49 65 76 97
各趟排序之后的状态

Procere Parttion(Var R : FileType; L, H : Integer; Var I : Integer);
//对无序区R[1,H]做划分,I给以出本次划分后已被定位的基准元素的位置 //
Begin
I := 1; J := H; X := R[I] ;//初始化,X为基准//
Repeat
While (R[J] >;= X) And (I < J) Do
begin
J := J - 1 //从右向左扫描,查找第1个小于 X的元素//
If I < J Then //已找到R[J] 〈X//
begin
R[I] := R[J]; //相当于交换R[I]和R[J]//
I := I + 1
end;
While (R[I] <= X) And (I < J) Do
I := I + 1 //从左向右扫描,查找第1个大于 X的元素///
end;
If I < J Then //已找到R[I] >; X //
begin R[J] := R[I]; //相当于交换R[I]和R[J]//
J := J - 1
end
Until I = J;
R[I] := X //基准X已被最终定位//
End; //Parttion //

Procere QuickSort(Var R :FileType; S,T: Integer); //对R[S..T]快速排序//
Begin
If S < T Then //当R[S..T]为空或只有一个元素是无需排序//
begin
Partion(R, S, T, I); //对R[S..T]做划分//
QuickSort(R, S, I-1);//递归处理左区间R[S,I-1]//
QuickSort(R, I+1,T);//递归处理右区间R[I+1..T] //
end;
End; //QuickSort//

五、堆排序(Heap Sort)
1. 基本思想:
堆排序是一树形选择排序,在排序过程中,将R[1..N]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系来选择最小的元素。
2. 堆的定义: N个元素的序列K1,K2,K3,...,Kn.称为堆,当且仅当该序列满足特性:
Ki≤K2i Ki ≤K2i+1(1≤ I≤ [N/2])

堆实质上是满足如下性质的完全二叉树:树中任一非叶子结点的关键字均大于等于其孩子结点的关键字。例如序列10,15,56,25,30,70就是一个堆,它对应的完全二叉树如上图所示。这种堆中根结点(称为堆顶)的关键字最小,我们把它称为小根堆。反之,若完全二叉树中任一非叶子结点的关键字均大于等于其孩子的关键字,则称之为大根堆。
3. 排序过程:
堆排序正是利用小根堆(或大根堆)来选取当前无序区中关键字小(或最大)的记录实现排序的。我们不妨利用大根堆来排序。每一趟排序的基本操作是:将当前无序区调整为一个大根堆,选取关键字最大的堆顶记录,将它和无序区中的最后一个记录交换。这样,正好和直接选择排序相反,有序区是在原记录区的尾部形成并逐步向前扩大到整个记录区。
【示例】:对关键字序列42,13,91,23,24,16,05,88建堆

Procere Sift(Var R :FileType; I, M : Integer);
//在数组R[I..M]中调用R[I],使得以它为完全二叉树构成堆。事先已知其左、右子树(2I+1 <=M时)均是堆//
Begin
X := R[I]; J := 2*I; //若J <=M, R[J]是R[I]的左孩子//
While J <= M Do //若当前被调整结点R[I]有左孩子R[J]//
begin
If (J < M) And R[J].Key < R[J+1].Key Then
J := J + 1 //令J指向关键字较大的右孩子//
//J指向R[I]的左、右孩子中关键字较大者//
If X.Key < R[J].Key Then //孩子结点关键字较大//
begin
R[I] := R[J]; //将R[J]换到双亲位置上//
I := J ; J := 2*I //继续以R[J]为当前被调整结点往下层调整//
end;
Else
Exit//调整完毕,退出循环//
end
R[I] := X;//将最初被调整的结点放入正确位置//
End;//Sift//

Procere HeapSort(Var R : FileType); //对R[1..N]进行堆排序//
Begin
For I := N Div Downto 1 Do //建立初始堆//
Sift(R, I , N)
For I := N Downto 2 do //进行N-1趟排序//
begin
T := R[1]; R[1] := R[I]; R[I] := T;//将当前堆顶记录和堆中最后一个记录交换//
Sift(R, 1, I-1) //将R[1..I-1]重成堆//
end
End; //HeapSort//

六、几种排序算法的比较和选择
1. 选取排序方法需要考虑的因素:
(1) 待排序的元素数目n;
(2) 元素本身信息量的大小;
(3) 关键字的结构及其分布情况;
(4) 语言工具的条件,辅助空间的大小等。
2. 小结:
(1) 若n较小(n <= 50),则可以采用直接插入排序或直接选择排序。由于直接插入排序所需的记录移动操作较直接选择排序多,因而当记录本身信息量较大时,用直接选择排序较好。
(2) 若文件的初始状态已按关键字基本有序,则选用直接插入或冒泡排序为宜。
(3) 若n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序法中被认为是最好的方法。
(4) 在基于比较排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程,由此可以证明:当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlog2n)的时间。
(5) 当记录本身信息量较大时,为避免耗费大量时间移动记录,可以用链表作为存储结构。

⑶ kmp算法什么意思

KMP算法之所以叫做KMP算法是因为这个算法是由三个人共同提出来的,就取三个人名字的首字母作为该算法的名字。其实KMP算法与BF算法的区别就在于KMP算法巧妙的消除了指针i的回溯问题,只需确定下次匹配j的位置即可,使得问题的复杂度由O(mn)下降到O(m+n)。
在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。
对于next[]数组的定义如下:
1) next[j] = -1 j = 0
2) next[j] = max(k): 0<k<j P[0...k-1]=P[j-k,j-1]
3) next[j] = 0 其他
如:
P a b a b a
j 0 1 2 3 4
next -1 0 0 1 2
即next[j]=k>0时,表示P[0...k-1]=P[j-k,j-1]
因此KMP算法的思想就是:在匹配过程称,若发生不匹配的情况,如果next[j]>=0,则目标串的指针i不变,将模式串的指针j移动到next[j]的位置继续进行匹配;若next[j]=-1,则将i右移1位,并将j置0,继续进行比较。

⑷ 字符串匹配算法,最快的是哪种

目前在我遇到的字符串匹配算法中,最快的应该是sunday算法了。。
(BF、KMP、BM、sunday)

⑸ 开源的字符串匹配算法有哪些

匹配整个字符串: /^javascript$/ 匹配包含: /javascript/ 匹配整个建议用==或者indexOf,(即不需要使用正则表达式) 正则表达式的优点在于模式匹配, 缺点是它的性能远比普通的字符串查找低下

⑹ 英雄联盟的匹配算法是怎样实现的

LOL所有游戏类型都是按照耗时长短计算经验金币的。耗时长经验金币多,耗时短经验金币少,以30级的号为例。(其实经验真的不重要- -b)人机耗时短 经验金币比较少.到了30级之后 20分钟的局大概20-30金币.战力不加。极低不加战力,经验金币比人机稍多 比匹配稍少。匹配与排位耗时看对局,经验金币是所有游戏模式增加最多的.20分钟的局76金币.(排位要30级和拥有16个英雄才能打,所以打排位的时候已经没有经验)。

⑺ 假设字符串 S=”ababbaabaa”,模式串为P=”aab”,请进行快速模式匹配,并画出匹配过程的示意图。

#include<stdio.h>
#include <string.h>
void Index(char S[],char T[],int pos,int next[])//利用模式串T的next函数求T在主串S中第pos个字符之后的位置的KMP算法。
{ //其中,T非空,1<=pos<=S[0]
int i=pos,j=1;
while(i<=S[0]&&j<=T[0])
{ if(j==0||S[i]==T[j])
{ ++i;
++j;
}
else j=next[j];
}
if(j>=T[0]) printf("模式串在主串中的位置是: %3d\n\n",i-T[0]);
else printf("主串中不存在和模式串相等的字串");
}
void main()
{char S[]=" ababbaabaa";//0号单元存放字符串中字符的个数
char T[]=" aab";//0号单元存放字符串中字符的个数
int i,j,pos=0;
int next[100];//next[i]表示当模式中第i个字符和主串中相应的字符‘失配’时,
//在模式串中需重新和主串中该字符进行比较的字符的位置
S[0]=strlen(S)-1;
T[0]=strlen(T)-1;
printf("S[0]=%d\n",S[0]);
printf("T[0]=%d\n",T[0]);
i=1;
next[1]=0;
j=0;
while(i<T[0])
{ if(j==0||T[i]==T[j])
{ ++i;
++j;
next[i]=j;
}
else j=next[j];
}
for(i=1;i<=T[0];i++)
printf("%3d",next[i]);
printf("\n\n请输入您要从主串中的哪个字符开始查找:");
scanf("%d",&pos);
Index(S,T,pos,next);
}

//可以运行,我刚做好的

⑻ 如何比较SIFT,SURF,Harris-SIFT图像匹配算法性能

SIFT匹配(Scale-invariant feature transform,尺度不变特征转换)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显着而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
2、SIFT特征的主要特点
从理论上说,SIFT是一种相似不变量,即对图像尺度变化和旋转是不变量。然而,由于构造SIFT特征时,在很多细节上进行了特殊处理,使得SIFT对图像的复杂变形和光照变化具有了较强的适应性,同时运算速度比较快,定位精度比较高。如:
在多尺度空间采用DOG算子检测关键点,相比传统的基于LOG算子的检测方法,运算速度大大加快;
关键点的精确定位不仅提高了精度,而且大大提高了关键点的稳定性;
在构造描述子时,以子区域的统计特性,而不是以单个像素作为研究对象,提高了对图像局部变形的适应能力;

热点内容
android使用at命令 发布:2025-01-18 20:54:51 浏览:216
phptiny 发布:2025-01-18 20:54:03 浏览:987
怎么给汉字加密 发布:2025-01-18 20:49:44 浏览:865
遍历javamap 发布:2025-01-18 20:39:05 浏览:624
我的世界租服务器哪里最便宜 发布:2025-01-18 20:38:50 浏览:564
dhcp服务器地址租期时间怎么调整 发布:2025-01-18 20:28:02 浏览:267
加密区的图片 发布:2025-01-18 20:22:17 浏览:474
key文件加密 发布:2025-01-18 20:12:07 浏览:736
etl服务器怎么用 发布:2025-01-18 20:08:18 浏览:281
硫酸镁算法 发布:2025-01-18 19:53:00 浏览:670