当前位置:首页 » 操作系统 » 算法研究者

算法研究者

发布时间: 2022-07-29 07:44:23

❶ 计算智能的图书《计算智能》信息2

书 名: 计算智能
作者:张军
出版社:清华大学出版社
出版时间: 2009年11月
ISBN: 9787302208440
开本: 16开
定价: 23.00 元 自计算机问世以来,人工智能(Artificial Intelligence,AI)一直是计算机科学家追求的目标之一。作为人工智能的一个重要领域,计算智能(Computational Intelligence,CI)因其智能性、并行性和健壮性,具有很好的自适应能力和很强的全局搜索能力,得到了众多研究者的广泛关注,目前已经在算法理论和算法性能方面取得了很多突破性的进展,并且已经被广泛应用于各种领域,在科学研究和生产实践中发挥着重要的作用。
计算智能是受到大自然智慧和人类智慧的启发而设计出的一类算法的统称。随着技术的进步,在科学研究和工程实践中遇到的问题变得越来越复杂,采用传统的计算方法来解决这些问题面临着计算复杂度高、计算时间长等问题,特别是对于一些NP(Non-determlnlstlc Polynomal)难问题,传统算法根本无法在可以忍受的时间内求出精确的解。 因此,为了在求解时间和求解精度上取得平衡,计算机科学家提出了很多具有启发式特征的计算智能算法。这些算法或模仿生物界的进化过程,或模仿生物的生理构造和身体机能,或模仿动物的群体行为,或模仿人类的思维、语言和记忆过程的特性,或模仿自然界的物理现象,希望通过模拟大自然和人类的智慧实现对问题的优化求解,在可接受的时间内求解出可以接受的解。这些算法共同组成了计算智能优化算法。
目前,计算智能算法在国内外得到广泛的关注,已经成为人工智能以及计算机科学的重要研究方向。计算智能还处于不断发展和完善的过程,目前还没有牢固的数学基础,国内外众多研究者也是在不断的探索中前进。 计算智能技术在自身性能的提高和应用范围的拓展中不断完善。计算智能的研究、发展与应用,无论是研究队伍的规模、发表的论文数量,还是网上的信息资源,发展速度都很快,已经得到了国际学术界的广泛认可,并且在优化计算、模式识别、图像处理、自动控制、经济管理、机械工程、电气工程、通信网络和生物医学等多个领域取得了成功的应用,应用领域涉及国防、科技、经济、工业和农业等各个方面。 《计算智能》特色
《计算智能》介绍了计算智能领域的主要算法,其主要特色包括:
◆对算法的初学者而言,《计算智能》通俗易懂。《计算智能》重点是对各种算法的思想来源、流程结构、发展改进参数设置和相关应用等方面进行介绍,让读者有一个整体的认识和了解。
◆对算法的研究者而言,《计算智能》实用性强。《计算智能》不但追踪和点评了各种算法的发展历程和研究现状,而且提供了大量经典而重要的参考资料,为读者进一步深入学习和理解算法提供方便。
◆《计算智能》图文并茂,深入浅出。《计算智能》避免其他算法书中大量公式、定理、证明等难懂的内容,而是通过大量的图表示例对每个算法进行说明和介绍,让读者不但能够快速理解算法内容,而且能够加深对算法的印象。
◆《计算智能》对相关的计算智能算法都提供了具体的实现流程图和伪代码,方便读者的理解和具体实现可作为工程技术人员实现算法的参考工具书。
◆《计算智能》在介绍各种算法的时候都通过一些典型的应用例子对算法的具体使用方法和使用过程进行说明,加深读者对算法的认识和理解。 第1章 绪论
第2章神经网络
第3章 模糊逻辑
第4章 遗传算法
第5章蚁群优化算法
第6章 粒子群优化算法
第7章 免疫算法
第8章 分布估计算法
第9章 Memetic算法
第10章 模拟退火与禁忌搜索
附录A索引

❷ 并行算法的并行算法的研究内容

(1) 并行计算模型 并行算法作为一门学科,首先研究的是并行计算模型。并行计算模型是算法设计者与体系结构研究者之间的一个桥梁,是并行算法设计和分析的基础。它屏蔽了并行机之间的差异,从并行机中抽取若干个能反映计算特性的可计算或可测量的参数,并按照模型所定义的计算行为构造成本函数,以此进行算法的复杂度分析。
并行计算模型的第一代是共享存储模型,如SIMD-SM和MIMD-SM的一些计算模型,模型参数主要是CPU的单位计算时间,这样科学家可以忽略一些细节,集中精力设计算法。第二代是分布存储模型。在这个阶段,人们逐渐意识到对并行计算机性能带来影响的不仅仅是CPU,还有通信。因此如何把不同的通信性能抽象成模型参数,是这个阶段的研究重点。第三代是分布共享存储模型,也是我们目前研究所处的阶段。随着网络技术的发展,通信延迟固然还有影响,但对并行带来的影响不再像当年那样重要,注重计算系统的多层次存储特性的影响。
(2) 设计技术并行算法研究的第二部分是并行算法的设计技术。虽然并行算法研究还不是太成熟,但并行算法的设计依然是有章可循的,例如划分法、分治法、平衡树法、倍增法/指针跳跃法、流水线法破对称法等都是常用的设计并行算法的方法。另外人们还可以根据问题的特性来选择适合的设计方法。
(3)并行算法分为多机并行和多线程并行。多机并行,如MPI技术;多线程并行,如OpenMP技术。
以上是并行算法的常规研究内容。

❸ 菜鸟问个问题,算法工程师一般是学什么出身的

其实有些算法是在数学的基础上,但是光弄数学是没有的,那只是纸上谈兵而已,真正地还得将其在计算机中运用的更多才行

❹ 吴恩达究竟是人工智能的布道者还是卖水人

Deeplearning.ai、Drive.ai再加上最近的Landing.ai,吴恩达夫妇几乎要把.ai系列注册全了。

不过从吴恩达从斯坦福到谷歌再到网络,离职网络后又创立了Deeplearning.ai和Landing.ai的经历,倒是受到了颇多争议。

讨论吴恩达究竟是人工智能的卖水人还是布道者根本没什么意义。能号召企业向AI转型,借此创造工作机会,并向渴望机会的人提供进入路径,这已经是一个布道者能做到的最好的事情。即使吴恩达能从中获得收益,又有什么错呢?

我倒是觉得,吴恩达的职业路径是一个很好的范本。大企业对顶端人工智能人才的需求总有一天会达到饱和,教授和学者们如果自己创业,拿到融资倒是不难,可如何把算法变成可售卖的商品却没那么容易。像吴恩达这样,以服务提供者的方式在更多地方挖掘出人工智能落地场景,再培养人才送上这些岗位,可能会是教授们另一条更顺遂的商业道路。

❺ 如何研究学习一个机器学习算法

如何研究学习一个机器学习算法
1. 还记得我刚来算法组的时候,我不懂TFIDF是什么,更不要说什么SVD,LDA了听都没听过,不懂user-based和item-based的区别,甚至连贝叶斯公式都写不全。在最初的一段时间,我看别人的代码,半懂不懂地听组会分享,然后实现一个又一个现在看来很幼稚的算法,感觉进步是飞速的。接过来一个算法需求,我就去网上找篇paper,然后把算法给实现了就丢给产品线用。
这个时候,同事A对我讲,“算法工程师不是懂一些数学,会写些算法就行了,算法工程师最重要的技能,在于如何定义问题,然后接下来才是如何解决这个问题。”从那以后,当面临一个需求时,我更愿意分析这个需求的关键点在哪,然后从大脑里搜索已有的东西能不能解决这个问题,比如FM的算法缺乏多样性,那么我想一下我看过的解决多样性的paper都有什么?能不能用在这个上面。如果不能,我再对应去搜问题的关键字,而不是算法的关键字。

2. 转眼间一年过去了,虽说看过的paper不够多,但是可以应付大部分的需求了。但是我开始迷茫起来,我觉得自己在实现一个又一个的算法trick,知道一个算法可以用,我就去网上down一个对应的算法包,然后把数据丢进去。没了......那么我的出路到底在哪?我的核心竞争力在哪?在于知道这么个东西,然后变成跑准备数据的么?
这个时候,同事B给我讲了到底博士是如何完成一个毕业设计的,几百篇论文作为基础。那是不是把几百篇论文全都和我以前一样一字不差的看完?PHD为什么很容易进入到一个他之前所未知的领域,在于在研究领域所积累的一套方法论。言归正传:
当接触到一个新的算法时要怎么去入手?用SVM举例吧:
第一,去找SVM的Survey,每一个成熟的算法分支必定有着survey这样的汇总性paper,通过这个paper,我们大致可以了解这个算法为什么出现,最基本的算法原型是什么样的,接下来后人对他做了什么样的改进,他到底还有什么问题。
第二,弄懂这个算法的来龙去脉,为什么出现,出现是因为改进了前面算法所不能做的什么事情?例如我们为什么不用基本的线性分类器?和用传统的分类算法找到一个超平面区别在于哪?
第三,知道了来龙去脉,我们还要知道这个算法的缺点在哪?不能适用于什么?我们怎么知道?这个就涉及到如何来快速地过一遍一篇paper。
第四,Abstract是最重要的,他告诉了我们这篇paper发的目的是什么?他想解决什么问题?然后是Future Work,之所以有着FutureWork是因为这个算法还有一些问题没有解决,这个就告诉了我们当前算法还有什么缺点?
第五,递归再去看这个缺点是否有其他的研究者已经解决掉了。

那么我们为什么看paper,为什么实现某算法,我归结为两点:
1. 学习目的,扩展思路,如果处于这种目的,理解paper的精髓是最重要的。
2. 解决实际问题。那么应该丢弃的观点是我最初那样拿过来一篇paper也没理解透彻也不知道能不能解决问题,也不知道到底是不是可行,就先实现了再说。劳民伤财~

3. 我自认为自己还算努力,看了很多书,看了很多算法,但是其实有时候说起来,比如用PCA还是SVD,他们到底有什么区别,我们如何选择,我其实还是不明白。
这时,同事C对我说,理解一个算法,最重要的是要理解这个算法的世界观,这个算法背后的哲学基础是什么?只有理解了这个,才算理解一个算法。
用Boosting来举例,他背后的世界观是PAC原则。那么Boosting为什么不能引入一个强分类器,因为这个做个类比就相当于Boosting原本是美国的民主政治,一旦引入了一个强势的领导,就一下子变成了当年毛爷爷时候的政治了。Boosting的世界观就崩塌掉了。至于说Boosting最终是如何调整数据集的权重,这些就都属于了细节的层面。

最后,补充一个同事D,无意间的话让我发觉自己要变得更优秀才行:
同事D在搜Resys,有一个快照上面写着:本科生Resys十佳论文。同事扭头对我说,靠,现在本科生都可以发Resys paper了。让我意识到了自己其实在原本上差距有多大,我要付出更大的努力才能弥补这些也许别人觉得无法跨越的鸿沟。

❻ Python工程师与人工智能算法工程师有什么区别

Python工程师与人工智能工程师的区别是什么?一是Python工程师主要是从事编程,只能算是程序员;人工智能工程师主要是从事算法研究,也称作是算法工程师。两者有本质的区别。二是Python工程师开发编程就像走业务流程一样,很多东西都是现有的,你只需要一步一步的去敲代码,去熟悉它,并不会创造出一些新的东西;人工智能算法工程师比Python工程师更需要有良好的数学基础,因为在人工智能算法研究中会运用到许多数学知识,还要学会如何灵活运用各种框架和优化神经网络,需要你去研发它,创造出新的东西

❼ 神经网络算法原理

4.2.1 概述

人工神经网络的研究与计算机的研究几乎是同步发展的。1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的着作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid 函数构成的模型(图 4-3)。

储层特征研究与预测

以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

❽ pso的来源背景

为了说明粒子群优化算法的发展和形成背景,首先介绍一下早期的简单模型,即Boid(Bird-oid)模型。这个模型是为了模拟鸟群的行为而设计的,它也是粒子群优化算法的直接来源。
一个最简单的模型是这样的:每一个鸟的个体用直角坐标系上的点表示,随机地给它们赋一个初速度和初位置,程序运行的每一步都按照“最近邻速度匹配”规则,很快就会使得所有点的速度变得一样。因为这个模拟太简单而且远离真实情况,于是在速度项中增加了一个随机变量,即在迭代的每一步,除了满足“最近邻速度匹配”之外,每一步速度还要添加一个随机变化的量,这样使得整个模拟看起来更为真实。
Heppner设计了一个“谷地模型”来模拟鸟群的觅食行为。假设在平面上存在一个“谷地”,即食物所在地,鸟群开始时随机地分散在平面上,为了寻觅食物所在地,它们按照如下规则运动:
首先假设谷地的位置坐标为(x0,y0),单个鸟的位置和速度坐标分别为和(x,y),用当前位置到谷地的距离s:来衡量当前位置和速度的“好坏程度”,离谷地的距离越近,则越“好”,反之越“坏”。假设每一个鸟具有记忆能力,能够记住曾经达到的最好位置,记作pBest,并记a为系统规定的速度调节常数,rand为一个[0,1]间的随机数,设定速度项按照下述规则变化:
然后假设群体之间可以以某种方式通讯,每个个体能够知道并记住到当前为止整个群体的最好位置,记为gBest,记b为系统规定的速度调节常数,Rand为一个[0,1]间的随机数,则速度项在经过以上调整后,还必须按照下述规则变化:
在计算机上模拟的结果显示:当a/b较大时,所有的个体很快地聚集到“谷地”上;反之,粒子缓慢地摇摆着聚集到“谷地”的四周。通过这个简单的模拟,发现群体能很快地找到一个简单函数(2-1)的最优点。受该模型启发,Kennedy和Eberhart设计出了一种演化优化算法,并通过不断的试验和试错,最后将此算法的基本型固定为:
其中符号的意义同上。研究者认为每个个体被抽象为没有质量和体积,而仅仅具有速度和位置的微粒,故将此方法称为“粒子群”优化算法。
据此,可对粒子群算法小结如下:粒子群算法是一种基于种群的搜索过程,其中每个个体称作微粒,定义为在D维搜索空间中待优化问题的潜在解,保存有其历史最优位置和所有粒子的最优位置的记忆,以及速度。在每一演化代,微粒的信息被组合起来调整速度关于每一维上的分量,继而被用来计算新的微粒位置。微粒在多维搜索空间中不断改变它们的状态,直到到达平衡或最优状态,或者超过了计算限制为止。问题空间的不同维度之间唯一的联系是通过目标函数引入的。很多经验证据已经显示该算法是一个非常有效的优化工具。微粒群优化算法的流程图见图2-1。
以下给出微粒群算法的比较完整的形式化表述。在连续空间坐标系中,微粒群算法的数学描述如下:设微粒群体规模为N,其中每个微粒在D维空间中的坐标位置向量表示为,速度向量表示为,微粒个体最优位置(即该微粒经历过的最优位置)记为,群体最优位置(即该微粒群中任意个体经历过的最优位置)记为。不失一般性,以最小化问题为例,在最初版本的微粒群算法中,个体最优位置的迭代公式为:
群体最优位置为个体最优位置中最好的位置。速度和位置迭代公式分别为:
由于初始版本在优化问题中应用时效果并不太好,所以初始算法提出不久之后就出现了一种改进算法,在速度迭代公式中引入了惯性权重ω,速度迭代公式变为:
虽然该改进算法与初始版本相比复杂程度并没有太大的增加,但是性能却有了很大的提升,因而被广泛使用。一般的,将该改进算法称为标准微粒群算法,而将初始版本的算法称为原始微粒群算法。
通过分析PSO算法的收敛行为,Clerc介绍了一种带收缩因子的PSO算法变种,收缩因子保证了收敛性并提高了收敛速度。此时的速度迭代公式为:
显然,迭代公式(2-7)和(2-8)并无本质区别,只要适当选取参数,二者完全相同。
微粒群算法有两种版本,分别称为全局版本和局部版本。在全局版本中,微粒跟踪的两个极值为自身最优位置pBest和种群最优位置gBest。对应的,在局部版本中,微粒除了追随自身最优位置pBest之外,不跟踪种群最优位置gBest,而是跟踪拓扑邻域中的所有微粒的最优位置nBest。对于局部版本,速度更新公式(2-7)变为:
其中为局部邻域中的最优位置。
每一代中任意微粒迭代的过程见图2-2所示。从社会学的角度来看速度迭代公式,其中第一部分为微粒先前速度的影响,表示微粒对当前自身运动状态的信任,依据自身的速度进行惯性运动,因此参数ω称为惯性权重(Inertia Weight);第二部分取决于微粒当前位置与自身最优位置之间的距离,为“认知(Cognition)”部分,表示微粒本身的思考,即微粒的运动来源于自己经验的部分,因此参数c1称为认知学习因子(也可称为认知加速因子);第三部分取决于微粒当前位置与群体中全局(或局部)最优位置之间的距离,为“社会(Social)”部分,表示微粒间的信息共享与相互合作,即微粒的运动来源于群体中其他微粒经验的部分,它通过认知模拟了较好同伴的运动,因此参数c2称为社会学习因子(也可称为社会加速因子)。
自从PSO算法被提出以来,由于它直观的背景,简单而容易实现的特点,以及对于不同类型函数广泛的适应性,逐渐得到研究者的注意。十余年来,PSO算法的理论与应用研究都取得了很大的进展,对于算法的原理已经有了初步的了解,算法的应用也已经在不同学科中得以实现。
PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(2)由于缺乏精密搜索方法的配合,PSO算法往往不能得到精确的结果。造成这种问题的原因是PSO算法并没有很充分地利用计算过程中获得的信息,在每一步迭代中,仅仅利用了群体最优和个体最优的信息。(3)PSO算法虽然提供了全局搜索的可能,但是并不能保证收敛到全局最优点上。(4)PSO算法是一种启发式的仿生优化算法,当前还没有严格的理论基础,仅仅是通过对某种群体搜索现象的简化模拟而设计的,但并没有从原理上说明这种算法为什么有效,以及它适用的范围。因此,PSO算法一般适用于一类高维的、存在多个局部极值点而并不需要得到很高精度解的优化问题。
当前针对PSO算法开展的研究工作种类繁多,经归纳整理分为如下八个大类:(1)对PSO算法进行理论分析,试图理解其工作机理;(2)改变PSO算法的结构,试图获得性能更好的算法;(3)研究各种参数配置对PSO算法的影响;(4)研究各种拓扑结构对PSO算法的影响;(5)研究离散版本的PSO算法;(6)研究PSO算法的并行算法;(7)利用PSO算法对多种情况下的优化问题进行求解;(8)将PSO算法应用到各个不同的工程领域。以下从这八大类别着手,对PSO算法的研究现状作一梳理。由于文献太多,无法面面俱到,仅捡有代表性的加以综述。

❾ 算法工程师一般是学什么出身的

ACMer

热点内容
netcore编译前执行代码 发布:2025-03-16 03:05:17 浏览:475
饥荒联机版服务器搭建程序 发布:2025-03-16 02:55:18 浏览:684
win7如何访问共享 发布:2025-03-16 02:55:14 浏览:37
centosphp升级 发布:2025-03-16 02:42:04 浏览:52
绝地求生体验服为什么服务器已满了 发布:2025-03-16 02:42:03 浏览:706
服务器电脑机房是干嘛的 发布:2025-03-16 02:30:47 浏览:489
龙贝格算法c语言 发布:2025-03-16 02:26:28 浏览:102
c语言字符串读入 发布:2025-03-16 02:21:23 浏览:478
python爬虫开发环境 发布:2025-03-16 02:19:55 浏览:627
androidondestory 发布:2025-03-16 02:12:49 浏览:863