当前位置:首页 » 操作系统 » 大数据聚类算法

大数据聚类算法

发布时间: 2022-07-28 00:43:15

⑴ 数据量比较大适合用模糊聚类分析吗/

不适合,因为模糊聚类用到了隶属度,导致计算量大大超过了普听的硬聚类算法。最好用普通的硬聚类,k均值是一个不错的选择,速度目前应该是最快的效果也不错。如果数据过大可以考虑使用专门适合于大数据集合的聚类算法如BIRCH 等。

⑵ 大数据十大经典算法之k-means

大数据十大经典算法之k-means
k均值算法基本思想:
K均值算法是基于质心的技术。它以K为输入参数,把n个对象集合分为k个簇,使得簇内的相似度高,簇间的相似度低。
处理流程:
1、为每个聚类确定一个初始聚类中心,这样就有k个初始聚类中心;
2、将样本按照最小距离原则分配到最邻近聚类
3、使用每个聚类中的样本均值作为新的聚类中心
4、重复步骤2直到聚类中心不再变化
5、结束,得到K个聚类
划分聚类方法对数据集进行聚类时的要点:
1、选定某种距离作为数据样本间的相似性度量,通常选择欧氏距离。
2、选择平价聚类性能的准则函数
用误差平方和准则函数来评价聚类性能。
3、相似度的计算分局一个簇中对象的平均值来进行
K均值算法的优点:
如果变量很大,K均值比层次聚类的计算速度较快(如果K很小);
与层次聚类相比,K均值可以得到更紧密的簇,尤其是对于球状簇;
对于大数据集,是可伸缩和高效率的;
算法尝试找出使平方误差函数值最小的k个划分。当结果簇是密集的,而簇与簇之间区别明显的时候,效果较好。
K均值算法缺点:
最后结果受初始值的影响。解决办法是多次尝试取不同的初始值。
可能发生距离簇中心m最近的样本集为空的情况,因此m得不到更新。这是一个必须处理的问题,但我们忽略该问题。
不适合发现非凸面形状的簇,并对噪声和离群点数据较敏感,因为少量的这类数据能够对均值产生较大的影响。
K均值算法的改进:
样本预处理。计算样本对象量量之间的距离,筛掉与其他所有样本那的距离和最大的m个对象。
初始聚类中心的选择。选用簇中位置最靠近中心的对象,这样可以避免孤立点的影响。
K均值算法的变种:
K众数(k-modes)算法,针对分类属性的度量和更新质心的问题而改进。
EM(期望最大化)算法
k-prototype算法
这种算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
k均值算法用途:
图像分割;
衡量足球队的水平;
下面给出代码:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//输入格式
//数据数量N 维度D
//以下N行,每行D个数据
istream& loadData(istream& in);
//输出格式
//聚类的数量CN
//中心维度CD
//CN行,每行CD个数据
//数据数量DN
//数据维度DD
//以下DN组,每组的第一行两个数值DB, DDis
//第二行DD个数值
//DB表示改数据属于一类,DDis表示距离改类的中心的距离
ostream& saveData(ostream& out);
//设置中心的数量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次数, maxE ,E(t)表示第t次迭代后的平方误差和,当|E(t+1) - E(t)| < maxE时终止
void clustering(size_t times, double maxE);

private:
double calDistance(vector<double>& v1, vector<double>& v2);

private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"

#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU

namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}

istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//随机从m_Data中选取m_Center.size()个不同的样本点作为初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;

}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;

int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);

return 0;
}

⑶ 常用的聚类方法有哪几种

聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。

1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。

2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。

3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。

5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。

6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。

(3)大数据聚类算法扩展阅读:

在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。

它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

⑷ 聚类算法的聚类要求

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。
我们需要具有高度可伸缩性的聚类算法。 (high dimensionality)
一个数据库或者数据仓库可能包含若干维或者属性。许多聚类算法擅长处理低维的数据,可能只涉及两到三维。人类的眼睛在最多三维的情况下能够很好地判断聚类的质量。在高维空间中聚类数据对象是非常有挑战性的,特别是考虑到这样的数据可能分布非常稀疏,而且高度偏斜。 用户希望聚类结果是可解释的,可理解的,和可用的。也就是说,聚类可能需要和特定的语义解释和应用相联系。应用目标如何影响聚类方法的选择也是一个重要的研究课题。
记住这些约束,我们对聚类分析的学习将按如下的步骤进行。首先,学习不同类型的数据,以及它们对聚类方法的影响。接着,给出了一个聚类方法的一般分类。然后我们详细地讨论了各种聚类方法,包括划分方法,层次方法,基于密度的方法,基于网格的方法,以及基于模型的方法。最后我们探讨在高维空间中的聚类和孤立点分析(outlier analysis)。

⑸ 在大数据量时,K-means算法和层次聚类算法谁更有优势

这个问题其实是无解的,数据不同,算法的分类效果、实际运行时间也是不同。
若单从运算速度而言,k-means比层次更快。
原因是K-means是找中心,然后计算距离;层次是逐个样本逐层合并,层次的算法复杂度更高。
更重要的是,在大数量下,K-means算法和层次聚类算法的分类效果真的只能用见仁见智来形容了。

⑹ 聚类算法有哪些分类

聚类算法的分类有:

1、划分法

划分法(partitioning methods),给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K小于N。而且这K个分组满足下列条件:

(1) 每一个分组至少包含一个数据纪录;

(2)每一个数据纪录属于且仅属于一个分组(注意:这个要求在某些模糊聚类算法中可以放宽);

2、层次法

层次法(hierarchical methods),这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。具体又可分为“自底向上”和“自顶向下”两种方案。

例如,在“自底向上”方案中,初始时每一个数据纪录都组成一个单独的组,在接下来的迭代中,它把那些相互邻近的组合并成一个组,直到所有的记录组成一个分组或者某个条件满足为止。

3、密度算法

基于密度的方法(density-based methods),基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。

4、图论聚类法

图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。因此,每一个最小处理单元数据之间都会有一个度量表达,这就确保了数据的局部特性比较易于处理。图论聚类法是以样本数据的局域连接特征作为聚类的主要信息源,因而其主要优点是易于处理局部数据的特性。

5、网格算法

基于网格的方法(grid-based methods),这种方法首先将数据空间划分成为有限个单元(cell)的网格结构,所有的处理都是以单个的单元为对象的。这么处理的一个突出的优点就是处理速度很快,通常这是与目标数据库中记录的个数无关的,它只与把数据空间分为多少个单元有关。

代表算法有:STING算法、CLIQUE算法、WAVE-CLUSTER算法;

6、模型算法

基于模型的方法(model-based methods),基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。这样一个模型可能是数据点在空间中的密度分布函数或者其它。它的一个潜在的假定就是:目标数据集是由一系列的概率分布所决定的。

通常有两种尝试方向:统计的方案和神经网络的方案。

(6)大数据聚类算法扩展阅读:

聚类算法的要求:

1、可伸缩性

许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。

我们需要具有高度可伸缩性的聚类算法。

2、不同属性

许多算法被设计用来聚类数值类型的数据。但是,应用可能要求聚类其他类型的数据,如二元类型(binary),分类/标称类型(categorical/nominal),序数型(ordinal)数据,或者这些数据类型的混合。

3、任意形状

许多聚类算法基于欧几里得或者曼哈顿距离度量来决定聚类。基于这样的距离度量的算法趋向于发现具有相近尺度和密度的球状簇。但是,一个簇可能是任意形状的。提出能发现任意形状簇的算法是很重要的。

4、领域最小化

许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。

5、处理“噪声”

绝大多数现实中的数据库都包含了孤立点,缺失,或者错误的数据。一些聚类算法对于这样的数据敏感,可能导致低质量的聚类结果。

6、记录顺序

一些聚类算法对于输入数据的顺序是敏感的。例如,同一个数据集合,当以不同的顺序交给同一个算法时,可能生成差别很大的聚类结果。开发对数据输入顺序不敏感的算法具有重要的意义。

⑺ 用于数据挖掘的聚类算法有哪些,各有何优势

大数据现在很火,有很多的企业在高薪聘请大数开发据人才,因此很多人纷纷开始学习大数据开发,希望可以获得一份高薪工作,关于大数据开发的优势有一下几点:
1、对于企业而言,通过微信连接用户和商家已是企业重要的发展方向,大数据将为你的企业带来优势。
2、大数据可以提高数据的可用性,大数据需要尖端的可视化数据工具,以把所有的数字和数据点转化成一些更具体的数据。这将增加数据整体的可用性,以便企业自己或他们的最终用户使用。
3、大数据的就业薪资,这应该是想要学习大数据朋友最为关心的问题了,大数据的发展前景很好,因此薪资待遇是不叫不错的。
互联网是当下流行趋势,大数据的发展是必然的,如果你想要学习大数据的话可以关注扣丁学堂,那里有大量的大数据视频教程供学员观看学习。对于一般的企业而言,大数据的作用主要表现在两个方面,分别是数据的分析使用与进行二次开发项目,大数据的运用,不仅标志着时代的进步,同时还激励着人们进行更深领域的探究。
现在的大数据开发技术让大数据成为了2017年移动互联网追逐的热点,想要自学的话也是可以的,但是你最好找到不错的教程,不然怕越学越乱。关于大数据的视频教程你可以看扣丁学堂的,只要你沉下心好好跟着老师学就可以学的很棒。

⑻ 增量聚类算法包括哪些

bigshuai
增量聚类算法
目前有关增量聚类的研究主要是将增量数据看成是时间序列数据或按特定顺序的数据, 主要可以分成两类: 一类是每次将所有数据进行迭代,即从第一个数据到最后一个数据进行迭代运算, 其优点是精度高, 不足之处是不能利用前一次聚类的结果, 浪费资源; 另一类是利用上一次聚类的结果,每次将一个数据点划分到已有簇中, 即新增的数据点被划入中心离它最近的簇中并将中心移向新增的数据点, 也就是说新增的数据点不会影响原有划分, 其优点是不需要每次对所有数据进行重新聚类, 不足之处是泛化能力弱, 监测不出孤立点。因此, 如何设计增量聚类算法以提高聚类效率, 成为当前聚类分析的一个重要挑战。
目前存在各种各样的聚类方法[ 3] , 传统的聚类方法主要被划分成五类: 基于层次的、基于划分的、基于密度的、基于网格的和基于模型的聚类。基于层次的聚类和基于划分的聚类是实际生活中应用最为广泛的两类。前者可以进一步划分为自底向上和自顶向下两种[ 1] , 例如CLIQUE[ 3] 、ENCLUS 和MAFIA[ 4] 属于自底向上算法, PROCLUS[ 5] 和ORCLUS[ 6 ]属于自顶向下的算法。但是, 传统的层次聚类算法由于计算量过大不适用于大数据集, 例如BIRCH[ 2] 和CURE[ 7 ] 。传统的基于划分的算法包括k-means、k-modes等等, 其中k-means是现存聚类算法中最经典的聚类算法[ 8, 9] 。
增量聚类是维持或改变k 个簇的结构的问题。比如, 一个特定序列中的新的数据点可能被划分到已有k 个簇的一个簇中, 也可能被划分到新的簇中,此时会需要将另外两个簇变成一个[ 10 ] 。自从H art igan在文献[ 11]中提出的算法被实现[ 12] , 增量聚类就吸引了众人的关注。D. Fisher[ 13] 提出的COBWEB 算法是一种涉及到增量形式数据点的增量聚类算法。文献[ 14, 15]中给出了与数据库的动态方面相关的增量聚类的详细阐述, 文献[ 16􀀁 18]中列出了其广泛应用的领域。对增量聚类产生兴趣的动力是主存空间有限, 有些信息不需要存储起来,例如数据点之间的距离, 同时增量聚类算法可以根据数据点集的大小和属性数进行扩展[ 19] 。文献[ 10, 17]中也对于求解增量聚类问题的算法进行了研究。
现在很多聚类算法都是对单一数据类型的数据进行聚类, 但是现实数据中非常多的数据都是混合数据类型的数据, 既包含数值属性数据, 还是分类属性数据, 简单地丢弃其中一种数据类型, 或者将其中一种数据类型转换成另一种, 都会影响聚类的精度。因此, 混合属性数据增量聚类的研究具有非常重要的意义。
2 基于传统聚类方法及其变形的增量聚类算法
现在对于增量聚类方法的增量处理主要集中在三个方面, 一类是基于传统聚类方法及其各种变形的增量聚类算法, 一类是基于生物智能的增量聚类算法, 另一类是针对数据流的聚类算法。

热点内容
pythoniris 发布:2025-03-15 09:05:27 浏览:188
浪淘沙服务器怎么没有了 发布:2025-03-15 09:05:26 浏览:97
ftprpm安装包下载 发布:2025-03-15 09:03:53 浏览:721
如何判断背包配置 发布:2025-03-15 09:03:00 浏览:899
淘宝api源码 发布:2025-03-15 09:00:00 浏览:159
压缩复原修车 发布:2025-03-15 08:46:52 浏览:78
linux调试汇编 发布:2025-03-15 08:38:09 浏览:107
手机上编写c语言 发布:2025-03-15 08:17:53 浏览:754
上传迅雷下载速度 发布:2025-03-15 08:07:50 浏览:554
好看解压书 发布:2025-03-15 08:04:18 浏览:672