当前位置:首页 » 操作系统 » 分之算法优势

分之算法优势

发布时间: 2022-07-22 02:29:43

Ⅰ 英国留学gpa算法究竟怎么算比较有优势

从以往经验来看,大多数英国大学并不愿意算学生的平均分,毕竟好大学申请人非常多,申请旺季人家也没有那么多时间一个一个算平均分。所以,如果学校开具的官方成绩单上有平均分的话,他们会直接认可那个平均分。 在学校开具的官方成绩单上,有两种算分方法较为普遍,一种是算数平均分,一种是加权平均分。 其中,算数平均分就是所有学科成绩的平均数,各科的学分对这个结果没有任何影响,也就是说,如果你的2学分的体育选修课课程成绩是满分,和你的6学分的数学专业课成绩是满分,在这种计算方法下是完全相同的结果。这种算法适合那些学分少的课程或选修课等成绩很突出,而学分高或专业课成绩一般的同学。 然而,加权平均分则不同,它是用各个学科成绩的分数乘以相应的学分的比重所计算出来的经过加权后的平均分。这种算法,最适合那些学分高的课程成绩很高,学分低的课程成绩较低的同学使用。https://www.douban.com/group/topic/106501523/

Ⅱ 数据挖掘十大经典算法及各自优势

数据挖掘十大经典算法及各自优势

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

以上是小编为大家分享的关于数据挖掘十大经典算法及各自优势的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅲ 二分法的优缺点

一、二分法的优点:

1、计算简单,方法可靠;

2、对f (x) 要求不高(只要连续即可) ;

3、收敛性总能得到保证;

4、二分法计算过程简单, 对)(xf要求不高(只要连续即可),程序容易实现。

二、二分法的缺点:可在大范围内求根,该方法收敛较慢,且不能求重根和复根, 其收敛速度仅与一个以 1/2为比值的等比级数相同,通常用于求根的初始近似值,而后在使用其它的求根方法。

(3)分之算法优势扩展阅读:

二分法的求法:

1、确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ。

2、求区间(a,b)的中点c。

3、计算f(c):

(1)若f(c)=0,则c就是函数的零点;

(2)若f(a)·f(c)<0,则令b=c;

(3)若f(c)·f(b)<0,则令a=c;

(4)判断是否达到精确度ξ:即若|a-b|<ξ,则得到零点近似值a(或b),否则重复2-4。

Ⅳ 算法可以使用哪些描述方式,各有什么优势

算法的描述方式主要有自然语言,流程图,伪代码等,它们的优势和不足可以简单地归纳如下:1、自然语言优势:自然语言描述的算法通俗易懂,不用专门的训练不足:a.由于自然语言的歧义性,容易导致算法执行的不确定性.b.自然语言的语句一般较长,导致描述的算法太长.c.当一个算法中循环和分歧较多时就很难清晰地表示出来.d.自然语言表示的算法不便翻译成计算机程序设计语言.2、流程图优势:流程图描述的算法清晰简洁,容易表达选择结构,它不依赖于任何具体的计算机和计算机程序设计语言,从而有利于不同环境的程序设计.不足:不易书写,修改起来比较费事,可以借助于专用的流程图制作软件来提升绘制和修改.3、伪代码优势:伪代码回避了程序设计语言的严格、烦琐的书写格式,书写方便,同时具备格式紧凑,易于理解,便于向计算机程序设计语言过渡的优点.不足:由于伪代码的种类繁多,语句不容易规范,有时会产生误读.

Ⅳ 算法可以使用哪些描述方式,各有什么优势

算法的描述方式主要有自然语言,流程图,伪代码等,它们的优势和不足可以简单地归纳如下:1、自然语言优势:自然语言描述的算法通俗易懂,不用专门的训练不足:a.由于自然语言的歧义性,容易导致算法执行的不确定性。b.自然语言的语句一般较长,导致描述的算法太长。c.当一个算法中循环和分歧较多时就很难清晰地表示出来。d.自然语言表示的算法不便翻译成计算机程序设计语言。2、流程图优势:流程图描述的算法清晰简洁,容易表达选择结构,它不依赖于任何具体的计算机和计算机程序设计语言,从而有利于不同环境的程序设计。不足:不易书写,修改起来比较费事,可以借助于专用的流程图制作软件来提升绘制和修改。3、伪代码优势:伪代码回避了程序设计语言的严格、烦琐的书写格式,书写方便,同时具备格式紧凑,易于理解,便于向计算机程序设计语言过渡的优点。不足:由于伪代码的种类繁多,语句不容易规范,有时会产生误读。

Ⅵ 计算机算法的优点和缺点各有哪些

再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,逆着这个行进方向,从终点向始点计算,在选定系统行进方向之后,常比线性规划法更为有效,由每个阶段都作出决策,从而使整个过程达到最优化。所谓多阶段决策过程,特别是对于那些离散型问题。实际上,动态规划法就是分多阶段进行决策,其基本思路是,原问题的解即子问题的解的合并
不好意思啊,就是把研究问题分成若干个相互联系的阶段,逐次对每个阶段寻找某种决策,用来解决多阶段决策过程问题的一种最优化方法,就是把一个复杂的问题分成两个或更多的相同或相似的子问题:按时空特点将复杂问题划分为相互联系的若干个阶段。字面上的解释是“分而治之”动态规划法[dynamic
programming
method
(dp)]是系统分析中一种常用的方法。在水资源规划中,往往涉及到地表水库调度、水资源量的合理分配、优化调度等问题,而这些问题又可概化为多阶段决策过程问题。动态规划法是解决此类问题的有效方法。动态规划法是20世纪50年代由贝尔曼(r,使整个过程达到最优.
bellman)等人提出。许多实际问题利用动态规划法处理,故又称为逆序决策过程。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
在计算机科学中,分治法是一种很重要的算法

Ⅶ 机器学习中常见的算法的优缺点之决策树

决策树在机器学习中是一个十分优秀的算法,在很多技术中都需要用到决策树这一算法,由此可见,决策树是一个经典的算法,在这篇文章中我们给大家介绍决策树算法的优缺点,希望这篇文章能够更好的帮助大家理解决策树算法。
其实决策树倍受大家欢迎的原因就是其中的一个优势,那就是易于解释。同时决策树可以毫无压力地处理特征间的交互关系并且是非参数化的,因此你不必担心异常值或者数据是否线性可分。但是决策树的有一个缺点就是不支持在线学习,于是在新样本到来后,决策树需要全部重建。另一个缺点就是容易出现过拟合,但这也就是诸如随机森林RF之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家,决策树训练快速并且可调,同时大家无须担心要像支持向量机那样调一大堆参数,所以在以前都一直很受欢迎。
那么决策树自身的优点都有什么呢,总结下来就是有六点,第一就是决策树易于理解和解释,可以可视化分析,容易提取出规则。第二就是可以同时处理标称型和数值型数据。第三就是比较适合处理有缺失属性的样本。第四就是能够处理不相关的特征。第五就是测试数据集时,运行速度比较快。第六就是在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
那么决策树的缺点是什么呢?总结下来有三点,第一就是决策树容易发生过拟合,但是随机森林可以很大程度上减少过拟合。第二就是决策树容易忽略数据集中属性的相互关联。第三就是对于那些各类别样本数量不一致的数据,在决策树中,进行属性划分时,不同的判定准则会带来不同的属性选择倾向;信息增益准则对可取数目较多的属性有所偏好,而增益率准则CART则对可取数目较少的属性有所偏好,但CART进行属性划分时候不再简单地直接利用增益率尽心划分,而是采用一种启发式规则。
通过上述的内容相信大家已经知道了决策树的优点和缺点了吧,大家在学习或者使用决策树算法的时候可以更好的帮助大家理解决策树的具体情况,只有了解了这些算法,我们才能够更好的使用决策树算法。

Ⅷ 用于数据挖掘的聚类算法有哪些,各有何优势

聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

Ⅸ 比较算法优缺点:

1.先来先服务先来先服务(FCFS, First Come First Serve)是最简单的调度算法,按先后顺序进行调度。1. 定义按照作业提交或进程变为就绪状态的先后次序,分派CPU;当前作业或进程占用CPU,直到执行完或阻塞,才出让CPU(非抢占方式)。在作业或进程唤醒后(如I/O完成),并不立即恢复执行,通常等到当前作业或进程出让CPU。2.适用场景比较有利于长作业,而不利于短作业。有利于CPU繁忙的作业,而不利于I/O繁忙的作业。
2. 轮转法轮转法(Round Robin)是让每个进程在就绪队列中的等待时间与享受服务的时间成正比例。1. 定义将系统中所有的就绪进程按照FCFS原则,排成一个队列。每次调度时将CPU分派给队首进程,让其执行一个时间片。时间片的长度从几个ms到几百ms。在一个时间片结束时,发生时钟中断。调度程序据此暂停当前进程的执行,将其送到就绪队列的末尾,并通过上下文切换执行当前的队首进程。进程可以未使用完一个时间片,就出让CPU(如阻塞)。2. 时间片长度的确定时间片长度变化的影响过长->退化为FCFS算法,进程在一个时间片内都执行完,响应时间长。过短->用户的一次请求需要多个时间片才能处理完,上下文切换次数增加,响应时间长。对响应时间的要求:T(响应时间)=N(进程数目)*q(时间片)就绪进程的数目:数目越多,时间片越小系统的处理能力:应当使用户输入通常在一个时间片内能处理完,否则使响应时间,平均周转时间和平均带权周转时间延长。
3. 多级反馈队列算法多级反馈队列算法(Round Robin with Multiple Feedback)是轮转算法和优先级算法的综合和发展。1. 定义设置多个就绪队列,分别赋予不同的优先级,如逐级降低,队列1的优先级最高。每个队列执行时间片的长度也不同,规定优先级越低则时间片越长,如逐级加倍。新进程进入内存后,先投入队列1的末尾,按FCFS算法调度;若按队列1一个时间片未能执行完,则降低投入到队列2的末尾,同样按FCFS算法调度;如此下去,降低到最后的队列,则按“时间片轮转”算法调度直到完成。仅当较高优先级的队列为空,才调度较低优先级的队列中的进程执行。如果进程执行时有新进程进入较高优先级的队列,则抢先执行新进程,并把被抢先的进程投入原队列的末尾。2.优点为提高系统吞吐量和缩短平均周转时间而照顾短进程。为获得较好的I/O设备利用率和缩短响应时间而照顾I/O型进程。不必估计进程的执行时间,动态调节3. 几点说明I/O型进程:让其进入最高优先级队列,以及时响应I/O交互。通常执行一个小时间片,要求可处理完一次I/O请求的数据,然后转入到阻塞队列。计算型进程:每次都执行完时间片,进入更低级队列。最终采用最大时间片来执行,减少调度次数。I/O次数不多,而主要是CPU处理的进程。在I/O完成后,放回优先I/O请求时离开的队列,以免每次都回到最高优先级队列后再逐次下降。为适应一个进程在不同时间段的运行特点,I/O完成时,提高优先级;时间片用完时,降低优先级。
4. 优先级法优先级算法(Priority Scheling)是多级队列算法的改进,平衡各进程对响应时间的要求。适用于作业调度和进程调度,可分成抢先式和非抢先式。1. 静态优先级作业调度中的静态优先级大多按以下原则确定:由用户自己根据作业的紧急程度输入一个适当的优先级。由系统或操作员根据作业类型指定优先级。系统根据作业要求资源情况确定优先级。进程的静态优先级的确定原则:按进程的类型给予不同的优先级。将作业的情态优先级作为它所属进程的优先级。2. 动态优先级进程的动态优先级一般根据以下原则确定:根据进程占用有CPU时间的长短来决定。根据就绪进程等待CPU的时间长短来决定。
5.短作业优先法短作业优先(SJF, Shortest Job First)又称为“短进程优先”SPN(Shortest Process Next);这是对FCFS算法的改进,其目标是减少平均周转时间。1. 定义对预计执行时间短的作业(进程)优先分派处理机。通常后来的短作业不抢先正在执行的作业。2. SJF的特点(1) 优点:比FCFS改善平均周转时间和平均带权周转时间,缩短作业的等待时间;提高系统的吞吐量;(2) 缺点:对长作业非常不利,可能长时间得不到执行;未能依据作业的紧迫程度来划分执行的优先级;难以准确估计作业(进程)的执行时间,从而影响调度性能。3. SJF的变型“最短剩余时间优先”SRT(Shortest Remaining Time)(允许比当前进程剩余时间更短的进程来抢占)“最高响应比优先”HRRN(Highest Response Ratio Next)(响应比R = (等待时间 + 要求执行时间) / 要求执行时间,是FCFS和SJF的折衷)6. 最高响应比优先法最高响应比优先法(HRN,Highest Response_ratio Next)是对FCFS方式和SJF方式的一种综合平衡。FCFS方式只考虑每个作业的等待时间而未考虑执行时间的长短,而SJF方式只考虑执行时间而未考虑等待时间的长短。因此,这两种调度算法在某些极端情况下会带来某些不便。HRN调度策略同时考虑每个作业的等待时间长短和估计需要的执行时间长短,从中选出响应比最高的作业投入执行。响应比R定义如下: R =(W+T)/T = 1+W/T其中T为该作业估计需要的执行时间,W为作业在后备状态队列中的等待时间。每当要进行作业调度时,系统计算每个作业的响应比,选择其中R最大者投入执行。这样,即使是长作业,随着它等待时间的增加,W / T也就随着增加,也就有机会获得调度执行。这种算法是介于FCFS和SJF之间的一种折中算法。由于长作业也有机会投入运行,在同一时间内处理的作业数显然要少于SJF法,从而采用HRN方式时其吞吐量将小于采用SJF 法时的吞吐量。另外,由于每次调度前要计算响应比,系统开销也要相应增加。

存储器管理的几种动态分区分配算法有什么特点优缺点都是什么

动态分区分配算法:
1.首次适应算法(FF/first fit)
2.循环首次适应算法(next fit)
3.最佳适应算法(best fit)
从最小的分区开始分配
4.最坏适应算法(worst fit)
从最大的分区开始分配
5.快速适应算法/分类搜索法(quick fit)
将空闲分区根据其容量的大小进行分类

热点内容
ftp服务器怎么访问 发布:2025-01-20 17:08:36 浏览:68
一台服务器多个同段地址怎么通讯 发布:2025-01-20 16:45:58 浏览:734
i7源码 发布:2025-01-20 16:40:48 浏览:983
抽签源码 发布:2025-01-20 16:38:35 浏览:62
密码箱怎么锁住 发布:2025-01-20 16:32:17 浏览:31
编译隔离 发布:2025-01-20 16:28:54 浏览:358
从哪里看自己的qq账号和密码 发布:2025-01-20 16:22:33 浏览:400
sql语句动态 发布:2025-01-20 16:18:22 浏览:298
sql表或的语句 发布:2025-01-20 16:00:49 浏览:163
西瓜视频怎么缓存不了电影了 发布:2025-01-20 16:00:45 浏览:890