千万级数据库优化
Ⅰ Mysql 对于千万级的大表要怎么优化
对大数据的数据库管理优化的总结:
常用的优化sql----突出快字,使完成操作的时间最短
1、用索引提高效率:
2、选择有效率的表名顺序,及数据结构及字段;
3、使用DECODE函数可以避免重复扫描相同记录或重复连接相同的表;
4、删除重复记;
5、过内部函数提高SQL效率;
......
读写分离-----操作不在一个表里完成
1、主数据库A,进行事务性增、改、删操作(INSERT、UPDATE、DELETE);
2、从数据库B,进行SELECT查询操作;
3、A复制到B,使数据保持一致性;
垂直划分 ------数据不存储在一个服务器里
按照功能划分,把数据分别放到不同的数据库和服务器。如博客功能的放到服务器A,储存文件放到服务器B;
水平划分------相同数据结构的数据不放在一张表里
把一个表的数据根据一定的规则划分到不同的数据库,两个数据库的表结构一样。
数据归档处理-----时间优先原则存储读取
将数据库中不经常使用的数据迁移至近线设备,将长期不使用的数据迁移至文件形式归档。这样,随着应用的需要,数据会在在线、近线和文件文档之间移动,如当应用需要访问很久以前的某些数据,它们的物理位置在近线设备,则会自动移动到在线设备。对用户的应用而言,这些都是透明的,就像所有数据都存放在在线设备一样,不会对数据库应用产生任何影响。
Ⅱ 千万数量级的数据库,全文索引很慢,怎么进行优化
千万数量级的数据库,全文索引很慢,怎么进行优化
条件少扫描的时间少,但数据集可能大,条件多反之,不能一概而论。 另外,不要用SELECT * 这样的方式,性能低下。
Ⅲ 千万级的数据,统计分析,非常慢,怎么优化
首先这个日志不适合放在数据库,其次mysql就是慢,这么大的数据量,弄个从库专门用来统计,慢慢统计吧
1 sql优化
2 分表(垂直、水平)
3 内存存放
4 提高磁盘IO(如使用SSD)
5 负载均衡
6 CDN
7 +CPU/内存
Ⅳ 千万级别以上的数据库如何去优化
第一优化你的sql和索引;
第二加缓存,memcached,redis;
第三以上都做了后,还是慢,就做主从复制或主主复制,读写分离,可以在应用层做,效率高,也可以用三方工具,第三方工具推荐360的atlas,其它的要么效率不高,要么没人维护;
第四如果以上都做了还是慢,不要想着去做切分,mysql自带分区表,先试试这个,对你的应用是透明的,无需更改代码,但是sql语句是需要针对分区表做优化的,sql条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,另外分区表还有一些坑,在这里就不多说了;
第五如果以上都做了,那就先做垂直拆分,其实就是根据你模块的耦合度,将一个大的系统分为多个小的系统,也就是分布式系统;
第六才是水平切分,针对数据量大的表,这一步最麻烦,最能考验技术水平,要选择一个合理的sharding key,为了有好的查询效率,表结构也要改动,做一定的冗余,应用也要改,sql中尽量带sharding key,将数据定位到限定的表上去查,而不是扫描全部的表;
mysql数据库一般都是按照这个步骤去演化的,成本也是由低到高。
Ⅳ php+mysql 如何优化千万级数据模糊查询加快
关于mysql处理百万级以上的数据时如何提高其查询速度的方法
最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。
由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:
1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘%c%’
若要提高效率,可以考虑全文检索。
6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′
10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。
12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)
13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21、避免频繁创建和删除临时表,以减少系统表资源的消耗。
22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。
23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。
30、尽量避免大事务操作,提高系统并发能力。
Ⅵ 怎么样提高千万级SQL数据库查询速度
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
Ⅶ mysql千万级数据update怎么优化
提问:何设计或优化千万级别表外其信息觉题点范简单说该何做于存储设计必须考虑业务特点收集信息:
1.数据容量:1-3内概少条数据每条数据概少字节;
2.数据项:否字段些字段值否经更新;
3.数据查询SQL条件:哪些数据项列名称经现WHERE、GROUP BY、ORDER BY句等;
4.数据更新类SQL条件:少列经现UPDATE或DELETE WHERE句;
5.SQL量统计比:SELECT:UPDATE+DELETE:INSERT=少
6.预计表及相关联SQL每总执行量何数量级
7.表数据:更新主业务 查询主业务
8.打算采用数据库物理服务器及数据库服务器架构
9.并发何
10.存储引擎选择InnoDBMyISAM
致明白10问题至于何设计类表应该都清楚
至于优化若指创建表能变表结构建议InnoDB引擎利用点内存减轻磁盘IO负载IO往往数据库服务器瓶颈
另外优化索引结构解决性能问题建议优先考虑修改类SQL语句使更快些已靠索引组织结构式前提 索引已经创建非若读主考虑打query_cache 及调整些参数值:sort_buffer_size,read_buffer_size,read_rnd_buffer_size,join_buffer_siz
更信息参见:
MySQL数据库服务器端核参数详解推荐配置
纸谈兵说我思路及我解决抛砖引玉
我近解决问题
我现公司三张表5亿数据每张表每增量100w
每张表概10columns左右
面我做测试比
1.首先看engine,数据量情况没做区情况
mysiam比innodb读情况效率要高13%左右
2.做partition读mysql官文档其实于partition专门myisam做优化于innodb所数据存ibdata面所即使看schema变其实没本质变化
区于同physical disk面情况提升概1%
区同physical disk我三同disks提升概3%其实所谓吞吐量由素决定比explain parition候看record区每区都其实本质没解决读问题提升写效率
另外问题于区张表三column都经用于做查询条件其实件悲惨事情没办所sql做针性区mysql官文档说间做区且用间查询恭喜
3.表主要用读写其实问题充应该问写入候同并发查询我问题比较简单mongodb shredding支持能crushmysql所通情况9am-9pm写入情况候我做 viewview基于近插入或者经查询通做view离读取说写table读进行逻辑判断前view操作
4做些archive table比先些表做已统计析通已析+增量解决
5用mysiam问题要注意.configure候加max index length参数候record数于制定度候indexdisable
Ⅷ Mysql 千万级数据量插入和查询应该怎么优化
mysql
千万级数据量插入和查询应该怎么优化
大数据库优化sql,索引,横向纵向切割!多库,主从,读写分离
Ⅸ 如何优化Mysql千万级快速分页,limit优化快
很多应用往往只展示最新或最热门的几条记录,但为了旧记录仍然可访问,所以就需要个分页的导航栏。然而,如何通过MySQL更好的实现分页,始终是比较令人头疼的问题。虽然没有拿来就能用的解决办法,但了解数据库的底层或多或少有助于优化分页查询。
我们先从一个常用但性能很差的查询来看一看。
SELECT *
FROM city
ORDER BY id DESC
LIMIT 0, 15
这个查询耗时0.00sec。So,这个查询有什么问题呢?实际上,这个查询语句和参数都没有问题,因为它用到了下面表的主键,而且只读取15条记录。
CREATE TABLE city (
id int(10) unsigned NOT NULL AUTO_INCREMENT,
city varchar(128) NOT NULL,
PRIMARY KEY (id)
) ENGINE=InnoDB;
真正的问题在于offset(分页偏移量)很大的时候,像下面这样:
SELECT *
FROM city
ORDER BY id DESC
LIMIT 100000, 15;
上面的查询在有2M行记录时需要0.22sec,通过EXPLAIN查看SQL的执行计划可以发现该SQL检索了100015行,但最后只需要15行。大的分页偏移量会增加使用的数据,MySQL会将大量最终不会使用的数据加载到内存中。就算我们假设大部分网站的用户只访问前几页数据,但少量的大的分页偏移量的请求也会对整个系统造成危害。Facebook意识到了这一点,但Facebook并没有为了每秒可以处理更多的请求而去优化数据库,而是将重心放在将请求响应时间的方差变小。
对于分页请求,还有一个信息也很重要,就是总共的记录数。我们可以通过下面的查询很容易的获取总的记录数。
SELECT COUNT(*)
FROM city;
然而,上面的SQL在采用InnoDB为存储引擎时需要耗费9.28sec。一个不正确的优化是采用 SQL_CALC_FOUND_ROWS,SQL_CALC_FOUND_ROWS 可以在能够在分页查询时事先准备好符合条件的记录数,随后只要执行一句 select FOUND_ROWS(); 就能获得总记录数。但是在大多数情况下,查询语句简短并不意味着性能的提高。不幸的是,这种分页查询方式在许多主流框架中都有用到,下面看看这个语句的查询性能。
SELECT SQL_CALC_FOUND_ROWS *
FROM city
ORDER BY id DESC
LIMIT 100000, 15;
这个语句耗时20.02sec,是上一个的两倍。事实证明使用 SQL_CALC_FOUND_ROWS 做分页是很糟糕的想法。
下面来看看到底如何优化。文章分为两部分,第一部分是如何获取记录的总数目,第二部分是获取真正的记录。
高效的计算行数
如果采用的引擎是MyISAM,可以直接执行COUNT(*)去获取行数即可。相似的,在堆表中也会将行数存储到表的元信息中。但如果引擎是InnoDB情况就会复杂一些,因为InnoDB不保存表的具体行数。
我们可以将行数缓存起来,然后可以通过一个守护进程定期更新或者用户的某些操作导致缓存失效时,执行下面的语句:
SELECT COUNT(*)
FROM city
USE INDEX(PRIMARY);
获取记录
下面进入这篇文章最重要的部分,获取分页要展示的记录。上面已经说过了,大的偏移量会影响性能,所以我们要重写查询语句。为了演示,我们创建一个新的表“news”,按照时事性排序(最新发布的在最前面),实现一个高性能的分页。为了简单,我们就假设最新发布的新闻的Id也是最大的。
CREATE TABLE news(
id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,
title VARCHAR(128) NOT NULL
) ENGINE=InnoDB;
一个比较高效的方式是基于用户展示的最后一个新闻Id。查询下一页的语句如下,需要传入当前页面展示的最后一个Id。
SELECT *
FROM news WHERE id < $last_id
ORDER BY id DESC
LIMIT $perpage
查询上一页的语句类似,只不过需要传入当前页的第一个Id,并且要逆序。
SELECT *
FROM news WHERE id > $last_id
ORDER BY id ASC
LIMIT $perpage
上面的查询方式适合实现简易的分页,即不显示具体的页数导航,只显示“上一页”和“下一页”,例如博客中页脚显示“上一页”,“下一页”的按钮。但如果要实现真正的页面导航还是很难的,下面看看另一种方式。
SELECT id
FROM (
SELECT id, ((@cnt:= @cnt + 1) + $perpage - 1) % $perpage cnt
FROM news
JOIN (SELECT @cnt:= 0)T
WHERE id < $last_id
ORDER BY id DESC
LIMIT $perpage * $buttons
)C
WHERE cnt = 0;
通过上面的语句可以为每一个分页的按钮计算出一个offset对应的id。这种方法还有一个好处。假设,网站上正在发布一片新的文章,那么所有文章的位置都会往后移一位,所以如果用户在发布文章时换页,那么他会看见一篇文章两次。如果固定了每个按钮的offset Id,这个问题就迎刃而解了。Mark Callaghan发表过一篇类似的博客,利用了组合索引和两个位置变量,但是基本思想是一致的。
如果表中的记录很少被删除、修改,还可以将记录对应的页码存储到表中,并在该列上创建合适的索引。采用这种方式,当新增一个记录的时候,需要执行下面的查询重新生成对应的页号。
SET p:= 0;
UPDATE news SET page=CEIL((p:= p + 1) / $perpage) ORDER BY id DESC;
当然,也可以新增一个专用于分页的表,可以用个后台程序来维护。
UPDATE pagination T
JOIN (
SELECT id, CEIL((p:= p + 1) / $perpage) page
FROM news
ORDER BY id
)C
ON C.id = T.id
SET T.page = C.page;
现在想获取任意一页的元素就很简单了:
SELECT *
FROM news A
JOIN pagination B ON A.id=B.ID
WHERE page=$offset;
还有另外一种与上种方法比较相似的方法来做分页,这种方式比较试用于数据集相对小,并且没有可用的索引的情况下—比如处理搜索结果时。在一个普通的服务器上执行下面的查询,当有2M条记录时,要耗费2sec左右。这种方式比较简单,创建一个用来存储所有Id的临时表即可(这也是最耗费性能的地方)。
CREATE TEMPORARY TABLE _tmp (KEY SORT(random))
SELECT id, FLOOR(RAND() * 0x8000000) random
FROM city;
ALTER TABLE _tmp ADD OFFSET INT UNSIGNED PRIMARY KEY AUTO_INCREMENT, DROP INDEX SORT,ORDER BY random;
接下来就可以向下面一样执行分页查询了。
SELECT *
FROM _tmp
WHERE OFFSET >= $offset
ORDER BY OFFSET
LIMIT $perpage;
简单来说,对于分页的优化就是。。。避免数据量大时扫描过多的记录。