nosql数据库原理
Ⅰ 数据库查找的原理是什么
关系型数据库采用结构化查询语言(即sql)来对数据库进行查询,SQL早已获得了各个数据库厂商的支持,成为数据库行业的标准。它能够支持数据库的CRUD(增加、查询、更新、删除)操作,具有非常强大的功能,SQL可以采用类似索引的方法来加快查询操作。
NoSQL数据库使用的是非结构化查询语言(UnQL),它以数据集(像文档)为单位来管理和操作数据。由于它没有一个统一的标准,所以每个数据库厂商提供产品标准是不一样的,NoSQL中的文档Id与关系型表中主键的概念类似,NoSQL数据库采用的数据访问模式相对SQL更简单而精确。
(1)nosql数据库原理扩展阅读
扩展方式——
当前社会和科学飞速发展,要支持日益增长的数据库存储需求,当然要求数据库有良好的扩展性能,并且要求数据库支持更多数据并发量,扩展方式是NoSQL数据库与关系型数据库差别最大的地方。
NoSQL数据库由于使用的是数据集的存储方式,它的存储方式一定是分布式的,它可以采用横向的方式来开展数据库,也就是可以添加更多数据库服务器到资源池,然后由这些增加的服务器来负担数据量增加的开销。
Ⅱ 大数据具体是学习什么内容呢主要框架是什么
首先,学习大数据是需要有java,python和R语言的基础。
1) Java学习到什么样的程度才可以学习大数据呢?
java需要学会javaSE即可。javaweb,javaee对于大数据用不到。学会了javase就可以看懂hadoop框架。
2) python是最容易学习的,难易程度:python java Scala 。
python不是比java更直观好理解么,因为会了Python 还是要学习java的,你学会了java,再来学习python会很简单的,一周的时间就可以学会python。
3) R语言也可以学习,但是不推荐,因为java用的人最多,大数据的第一个框架Hadoop,底层全是Java写的。就算学会了R还是看不懂hadoop。
java在大数据中的作用是构成大数据的语言,大数据的第一个框架Hadoop以及其他大数据技术框架,底层语言全是Java写的,所以推荐首选学习java
大数据开发学习路线:
第一阶段:Hadoop生态架构技术
1、语言基础
Java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。
Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。
Python:基础语法,数据结构,函数,条件判断,循环等基础知识。
2、环境准备
这里介绍在windows电脑搭建完全分布式,1主2从。
VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。
3、MapRece
MapRece分布式离线计算框架,是Hadoop核心编程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。
5、Yarn(Hadoop2.0)
Yarn是一个资源调度平台,主要负责给任务分配资源。
6、Hive
Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。
7、Spark
Spark 是专为大规模数据处理而设计的快速通用的计算引擎。
8、SparkStreaming
Spark Streaming是实时处理框架,数据是一批一批的处理。
9、SparkHive
Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。
10、Storm
Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。
11、Zookeeper
Zookeeper是很多大数据框架的基础,是集群的管理者。
12、Hbase
Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。
13、Kafka
kafka是一个消息中间件,作为一个中间缓冲层。
14、Flume
Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。
一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。
另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。
第二阶段:数据挖掘算法
1、中文分词
开源分词库的离线和在线应用
2、自然语言处理
文本相关性算法
3、推荐算法
基于CB、CF,归一法,Mahout应用。
4、分类算法
NB、SVM
5、回归算法
LR、DecisionTree
6、聚类算法
层次聚类、Kmeans
7、神经网络与深度学习
NN、Tensorflow
以上就是学习Hadoop开发的一个详细路线,如果需要了解具体框架的开发技术,可咨询加米谷大数据老师,详细了解。
学习大数据开发需要掌握哪些技术呢?
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
(2)HTML、CSS与Java
PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用
(3)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
Linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
分布式计算框架和Spark&Strom生态体系
(1)分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)
(2)storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、大数据项目实战数据获取、数据处理、数据分析、数据展现、数据应用
大数据分析—AI(人工智能)Data
Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
以上的回答希望对你有所帮助
Ⅲ Python学哪个数据库
数据库得根据业务需要来选择。
关系型数据库RDB:MySQL,Oracle,DB2,PGSQL等
非关系型数据库NoSQL:Redis,Cassandra,Mongodb等
还有最近比较新的NewSQL
Ⅳ 大数据应用程序最佳选择:是SQL还是NoSQL
执行大数据[注]项目的企业面对的关键决策之一是使用哪个数据库,SQL还是NoSQL?SQL有着骄人的业绩,庞大的安装基础;而NoSQL正在获得可观的收益,且有很多支持者。我们来看看两位专家对这个问题的看法。
专家
·VoltDB公司首席技术官Ryan Betts表示,SQL已经赢得了大型企业的广泛部署,大数据是它可以支持的另一个领域。
·Couchbase公司首席执行官Bob Wiederhold表示,NoSQL是可行的选择,并且从很多方面来看,它是大数据的最佳选择,特别是涉及到可扩展性时。
SQL经历时间的考验,并仍然在蓬勃发展
VoltDB公司首席技术官Ryan Betts
结构化查询语言(SQL)是经过时间考验的胜利者,它已经主宰了几十年,目前大数据公司和组织(例如谷歌、Facebook、Cloudera和Apache)正在积极投资于SQL。
在成为主导技术(例如SQL)后,有时候我们很容易忘记其优越性。SQL的独特优势包括:
1. SQL能够加强与数据的交互,并允许对单个数据库设计提出问题。这是很关键的特征,因为无法交互的数据基本上是没用的,并且,增强的交互性能够带来新的见解、新的问题和更有意义的未来交互。
2. SQL是标准化的,使用户能够跨系统运用他们的知识,并对第三方附件和工具提供支持。
3. SQL能够扩展,并且是多功能和经过时间验证的,这能够解决从快写为主导的传输到扫描密集型深入分析等问题。
4. SQL对数据呈现和存储采用正交形式,一些SQL系统支持JSON和其他结构化对象格式,比NoSQL具有更好的性能和更多功能。
虽然NoSQL的出现带来了一些影响,但SQL仍然主导着市场,并在大数据领域赢得了很多投资和广泛部署。
NoSQL的说法很含糊,对于本次讨论,我借用Rick Cattell对NoSQL的定义,即提供简单操作(例如密钥/数值存储)或简单记录和索引,并专注于这些简单操作的横向可扩展性的系统。
很显然,现在很多新的数据库并不是都一样,认识每种数据库背后的原理以及潜在问题是成功的关键。NoSQL的主要特点使其更适合于特定的问题。例如,图形数据库更适合于数据通过关系组织的情况,而专门的文本搜索系统更适合于需要实时搜索的情况。
在这里,让我们看看SQL系统的主要优势和差异化功能:
* SQL可实现交互性。 SQL是一种声明性查询语言。用户说出他们想要什么(例如,显示过去五年三月份期间顶级客户的地理位置),数据库内部就会构件算法并提取请求的结果。相比之下,NoSQL编程创新MapRece是一种程序性查询技术。在用户提出请求时,MapRece要求用户不仅说出自己想要什么,而且要求他们陈述如何产生答案。
这听起来像一个无趣的技术差异,但这很关键,原因在于:首先,声明性SQL查询更容易通过图形化工具以及点击报告构建器来构建。这让分析师、操作员、管理者和其他不具备软件编程能力的员工进行数据库查询;其次,数据库引擎可以利用内部信息来选择最有效的算法。改变数据库的物理布局或数据库,最佳算法仍然能够计算出来。而在程序性系统中,编程人员需要重新访问和重新编程算法,这是非常昂贵且容易出错的过程。
市场理解这个关键区别。在2010年,谷歌宣布部署SQL来补充MapRece,主要受内部用户需求所驱动。最近,Facebook发布了Presto(一种SQL部署)来查询其PB级HDFS集群。根据Facebook表示:“随着我们的仓库增长到PB级,以及我们的需求变化,我们清楚地意识到,我们需要一个提供低延时查询的互动系统。”此外,Cloudera也正在构建Impala—另一个基于HDFS的SQL部署。
* SQL是标准化的。 虽然供应商有时候会添加自己的语言到SQL界面,但SQL的核心是标准化的,还有其他规格(例如ODBC和JDBC)提供广泛可用的稳定界面到SQL存储。这带来了一个管理和操作工具生态系统,可以在SQL系统之上设计、监控、检查、探索和构建应用程序。
SQL用户和程序员可用跨多个后端系统重复使用其API和UI知识,减少了应用程序的开发时间。标准化还允许声明性第三方提取、转换、加载(ETL)工具,使企业可以在数据库之间以及跨系统传输数据。
* SQL可扩展。 认为SQL必须牺牲以获得可扩展性的看法,完全是错误的。如前所述,Facebook创建了一个SQL界面来查询PB级数据。SQL能够非常有效地运行极快的ACID传输。SQL对数据存储和索引提供的抽象[注]化允许跨各种问题和数据集大小的一致使用,让SQL可以跨集群复制数据存储有效地运行。使用SQL作为界面独立于构建云、规模或HA系统,SQL中并没有什么在阻止和限制容错、高可用性和复制。事实上,所有现代SQL系统支持云友好型横向可扩展性、复制和容错性。
* SQL支持JSON。 几年前,很多SQL系统增加了XML文档支持。现在,随着JSON成为一种流行的数据交换格式,SQL供应商也纷纷加入了JSON型的支持。基于现在灵活的编程过程和web基础设施的正常运行时间要求,我们很需要结构化数据类型的支持。Oracle 12c、PostgreSQL 9.2、VoltDB和其他支持JSON的数据库,通常具有优于“原生”JSON的性能。
SQL将继续赢得市场份额,并会继续看到新的投资和部署。NoSQL数据库提供专有查询语言或简单的键值语义,而没有更深层次的技术差异化。现代SQL系统提供可扩展性的同时,还支持更丰富的查询语义,并有庞大的用户安装基础,广泛的生态系统整合和深度企业部署。
NoSQL更适合大数据应用程序
Couchbase公司首席执行官Bob Wiederhold
NoSQL越来越多地被认为是关系型数据库的可行替代品,特别是对于大数据应用程序。此外,无模式数据模型通常更适合于现在捕捉和处理的数据种类和类型。
当我们谈论NoSQL领域的大数据时,我们指的是从操作数据库读取和写入。不要将操作数据库与分析数据库混淆,这通常会查看大量数据,并从这些数据获取可视性。
虽然操作数据库的大数据看起来不具有可分析性,但操作数据库通常会存储超大量用户的大型数据集,这些用户经常需要访问数据来实时执行交易。这种数据库的操作规模也解释了NoSQL的关键特性,也就是为什么NoSQL是大数据应用程序的关键的原因。
NoSQL是可扩展性的关键
每次技术行业经历硬件发展的根本性转变时,都会出现一个拐点。在数据库领域,从纵向扩展到横向扩展的转变推动了NoSQL的发展。关系型数据库(包括来自甲骨文和IBM的数据库)是纵向扩展。也就是说,它们是集中式、共享一切的技术,只能通过增加更多昂贵的硬件来扩展。
而NoSQL数据库是分布式横向扩展技术。它们使用了分布式节点集(称为集群)来提供高度弹性扩展功能,让用户可以添加节点来动态处理负载。
分布式横向扩展的做法通常要比纵向做法更加便宜。商业关系型数据库的授权费用也让人望而却步,因为他们的价格是按每台服务器来计算。另一方面,NoSQL数据库通常是开源技术,按照运行的服务器集群收费,而且价格相对便宜。
NoSQL是灵活性的关键
关系型数据库和NoSQL数据模型有很大的不同。关系型模式获取数据,并将数据分配到很多相互关联的表中,这些表通过外键相互应用。
当用户需要对数据集运行查询时,所需信息需要从多个表中收集(通常涉及数百个企业应用程序),并结合这些信息,再提供给应用程序。同样地,当写入数据时,需要在多个表协调和执行写入。当数据相对较少,并且,数据以较慢速度流入数据库时,关系型数据库通常能够捕捉和存储信息。然而,现在的应用程序通常需要快速写入(和读取)海量数据。
NoSQL数据库采用非常不同的模式。在其核心,NoSQL数据库其实是“NoREL”,或者说非关系型,这意味着它们没有依赖于表以及表之间的联系,以存储和组织信息。例如,以文档为导向的NoSQL数据库获取你想要存储的数据,并采用JSON格式整合到文档中。每个JSON文档可以被你的应用程序视为一个对象。JSON文档可能会提取跨越25个表的数据,将数据集成到一个文档中。
聚合这些信息可能会导致信息重复,但由于存储已不再是一个成本问题,数据模型灵活性、发布所产生文档的简便性以及读取和写入性能提高,让这成为不错的选择。
NoSQL是大数据应用程序的关键
通过第三方(包括社交媒体网站),数据正变得越来越容易捕捉和访问。这些数据包括:个人用户信息、地理位置数据、用户生产的内容、机器记录数据和传感器产生的数据。企业还可以依赖于大数据来推动其关键任务型应用程序。同时,企业正在转向到NoSQL数据库,因为这种数据库非常适合现在新型的数据类型。
开发人员想要一个灵活的数据库,可以很容易适应新的数据类型,并且,不会受第三方数据供应商的内容结构变化的影响。大多数新数据是非结构化和半结构化,因此,开发人员也需要能够有效存储这些数据的数据库。然而,关系型数据库采用的严格定义的基于模式的做法让其不可能快速整合新数据类型,并且很不适合于非结构化和半结构化数据。
总体来说,随着web和移动应用程序的增加、新的趋势、网上消费者行为的转变以及新的数据类型的出现,行业需要能够提供可扩展的灵活的数据库技术来管理和访问数据。NoSQL技术是有效满足这些需求的唯一可行解决方案。
Ⅳ 大数据专业是什么
您好,很高兴为您解答问题,大数据是本科专业。
1、数据科学与大数据技术属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。2、数据科学与大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才。3、 大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到 关系型数据库 用于分析时会花费过多时间和金钱。. 大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
以上是我的全部回复,希望能够帮助到您,祝您生活愉快~
Ⅵ 什么是NoSQL数据库
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。