k算法例题
‘壹’ 四维k-means算法题怎么做
这个算法比较复杂。
其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
K-means一般指K均值聚类算法。
‘贰’ 大数据十大经典算法之k-means
大数据十大经典算法之k-means
k均值算法基本思想:
K均值算法是基于质心的技术。它以K为输入参数,把n个对象集合分为k个簇,使得簇内的相似度高,簇间的相似度低。
处理流程:
1、为每个聚类确定一个初始聚类中心,这样就有k个初始聚类中心;
2、将样本按照最小距离原则分配到最邻近聚类
3、使用每个聚类中的样本均值作为新的聚类中心
4、重复步骤2直到聚类中心不再变化
5、结束,得到K个聚类
划分聚类方法对数据集进行聚类时的要点:
1、选定某种距离作为数据样本间的相似性度量,通常选择欧氏距离。
2、选择平价聚类性能的准则函数
用误差平方和准则函数来评价聚类性能。
3、相似度的计算分局一个簇中对象的平均值来进行
K均值算法的优点:
如果变量很大,K均值比层次聚类的计算速度较快(如果K很小);
与层次聚类相比,K均值可以得到更紧密的簇,尤其是对于球状簇;
对于大数据集,是可伸缩和高效率的;
算法尝试找出使平方误差函数值最小的k个划分。当结果簇是密集的,而簇与簇之间区别明显的时候,效果较好。
K均值算法缺点:
最后结果受初始值的影响。解决办法是多次尝试取不同的初始值。
可能发生距离簇中心m最近的样本集为空的情况,因此m得不到更新。这是一个必须处理的问题,但我们忽略该问题。
不适合发现非凸面形状的簇,并对噪声和离群点数据较敏感,因为少量的这类数据能够对均值产生较大的影响。
K均值算法的改进:
样本预处理。计算样本对象量量之间的距离,筛掉与其他所有样本那的距离和最大的m个对象。
初始聚类中心的选择。选用簇中位置最靠近中心的对象,这样可以避免孤立点的影响。
K均值算法的变种:
K众数(k-modes)算法,针对分类属性的度量和更新质心的问题而改进。
EM(期望最大化)算法
k-prototype算法
这种算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
k均值算法用途:
图像分割;
衡量足球队的水平;
下面给出代码:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//输入格式
//数据数量N 维度D
//以下N行,每行D个数据
istream& loadData(istream& in);
//输出格式
//聚类的数量CN
//中心维度CD
//CN行,每行CD个数据
//数据数量DN
//数据维度DD
//以下DN组,每组的第一行两个数值DB, DDis
//第二行DD个数值
//DB表示改数据属于一类,DDis表示距离改类的中心的距离
ostream& saveData(ostream& out);
//设置中心的数量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次数, maxE ,E(t)表示第t次迭代后的平方误差和,当|E(t+1) - E(t)| < maxE时终止
void clustering(size_t times, double maxE);
private:
double calDistance(vector<double>& v1, vector<double>& v2);
private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"
#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU
namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}
istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//随机从m_Data中选取m_Center.size()个不同的样本点作为初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;
}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;
int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);
return 0;
}
‘叁’ k近邻算法的案例介绍
如 上图所示,有两类不同的样本数据,分别用蓝色的小正方形和红色的小三角形表示,而图正中间的那个绿色的圆所标示的数据则是待分类的数据。也就是说,现在, 我们不知道中间那个绿色的数据是从属于哪一类(蓝色小正方形or红色小三角形),下面,我们就要解决这个问题:给这个绿色的圆分类。我们常说,物以类聚,人以群分,判别一个人是一个什么样品质特征的人,常常可以从他/她身边的朋友入手,所谓观其友,而识其人。我们不是要判别上图中那个绿色的圆是属于哪一类数据么,好说,从它的邻居下手。但一次性看多少个邻居呢?从上图中,你还能看到:
如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。 于此我们看到,当无法判定当前待分类点是从属于已知分类中的哪一类时,我们可以依据统计学的理论看它所处的位置特征,衡量它周围邻居的权重,而把它归为(或分配)到权重更大的那一类。这就是K近邻算法的核心思想。
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
KNN 算法本身简单有效,它是一种 lazy-learning 算法,分类器不需要使用训练集进行训练,训练时间复杂度为0。KNN 分类的计算复杂度和训练集中的文档数目成正比,也就是说,如果训练集中文档总数为 n,那么 KNN 的分类时间复杂度为O(n)。
KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
K 近邻算法使用的模型实际上对应于对特征空间的划分。K 值的选择,距离度量和分类决策规则是该算法的三个基本要素: K 值的选择会对算法的结果产生重大影响。K值较小意味着只有与输入实例较近的训练实例才会对预测结果起作用,但容易发生过拟合;如果 K 值较大,优点是可以减少学习的估计误差,但缺点是学习的近似误差增大,这时与输入实例较远的训练实例也会对预测起作用,是预测发生错误。在实际应用中,K 值一般选择一个较小的数值,通常采用交叉验证的方法来选择最优的 K 值。随着训练实例数目趋向于无穷和 K=1 时,误差率不会超过贝叶斯误差率的2倍,如果K也趋向于无穷,则误差率趋向于贝叶斯误差率。 该算法中的分类决策规则往往是多数表决,即由输入实例的 K 个最临近的训练实例中的多数类决定输入实例的类别 距离度量一般采用 Lp 距离,当p=2时,即为欧氏距离,在度量之前,应该将每个属性的值规范化,这样有助于防止具有较大初始值域的属性比具有较小初始值域的属性的权重过大。 KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。
实现 K 近邻算法时,主要考虑的问题是如何对训练数据进行快速 K 近邻搜索,这在特征空间维数大及训练数据容量大时非常必要。
‘肆’ 直线k中值算法
不好意思忘了输出到文件,不知道你指的运行不了是不是这个意思,还有我没有自己找数据测试过,实在不能保证结果的正确性,下面是输出到文件的程序
#include <stdio.h>
struct res
{
int x,w,c;
};
FILE* fp;
int n,k;
int ans=2100000000;
struct res r[10];
void dfs(int depth,int prev,int cur)
{
int i,j;
if(depth==k)return;
for(i=prev+1;i<n;i++)
{
int temp=0,tempcur=cur;
tempcur+=r[i].c;
for(j=prev+1;j<i;j++)
{
if(depth==0||(depth!=0&&r[i].x+r[prev].x<r[j].x*2))tempcur+=(r[i].x-r[j].x)*r[j].w;
else
tempcur+=(r[j].x-r[prev].x)*r[j].w;
}
for(j=i+1;j<n;j++)
{
temp+=(r[j].x-r[i].x)*r[j].w;
}
if(tempcur+temp<ans)ans=tempcur+temp;
dfs(depth+1,i,tempcur);
}
}
int main()
{
int i;
fp=fopen("kml0.in","r");
fscanf(fp,"%d%d",&n,&k);
for(i=0;i<n;i++)fscanf(fp,"%d%d%d",&r[i].x,&r[i].w,&r[i].c);
fclose(fp);
dfs(0,-1,0);
fp=fopen("output0.out","w");
fprintf(fp,"%d",ans);
fclose(fp);
return(0);
}
‘伍’ 数据挖掘题目,K—均值算法应用
这种问题明显是取巧的题目,是不是老师布置的作业呀。建议你还是自己认真做做吧,如果有具体的问题我想会有很多人帮你的。但不是帮你偷懒。
帮你修改好了,从你所犯错误看,你的编程水平还处于初级阶段。希望我花费的时间对你编程有帮助,我是一个大学老师,经常发现我的学生对改过的作业根本不看。希望你不是如此。建议你把我改过的地方,以及为什么这样改给我回个帖。
x1=1.2*randn(10,1)+3
y1=1.1*randn(10,1)+6
a=[x1,y1]
x2=1.2*randn(10,1)+5
y2=1.1*randn(10,1)+8
b=[x2,y2]
x3=1.2*randn(10,1)+1
y3=1.1*randn(10,1)+4
c=[x3,y3]
x=[a;b;c]
[idx,c]=kmeans(x,
3,
'dist','city',
'rep',5,
'disp','final')
plot(x(idx==1,1),x(idx==1,2),'r.','markersize',12)
hold
on
plot(x(idx==2,1),x(idx==2,2),'b.','markersize',12)
hold
on
plot(x(idx==3,1),x(idx==3,2),'g.','markersize',12)
‘陆’ 算法时间复杂度的计算例题
第一题:
int i=1,k=100这条语句算法步数是2步,执行频率是1;
循环中, k=k+1;这条语句每次算法步数是1;执行频率是n/2-1; i+=2这条语句每次算法步数是1;执行频率是n/2-1;
所以算法复杂度为1*(n/2-1)+1*(n/2-1)+2=n=o(n);
‘柒’ 独立性检验k简便算法
高中数学吗?
对于2×2列联表,K2=n(ad-bc)2/ [(a+b)(c+d)(a+c)(b+d)]
这个公式并没有可以化简的
至于其他检验方式,比上面的更复杂
‘捌’ k均值聚类算法例题
第一轮
A1(2,10)
B1(5,8),A3(8,4),B2(7,5),B3(6,4),C2(4,9)
C1(1,2),A2(2,5)
对应中心分别是(2,10),(6,6),(1.5,3.5)
最后结果:
{A1(2,10),B1(5,8),C2(4,9)}
{A3(8,4),B2(7,5),B3(6,4)}
{C1(1,2),A2(2,5)}
‘玖’ 数据挖掘 K-NN算法 这个题 过程对吗!!!帮忙下 谢谢
过程正确。不需要一定要和第一个比。
KNN算法[5]的基本思路是[6]:在给定新文本后,考虑在训练文本集中与该新文本距离最近(最相似)的 K 篇文本,根据这 K 篇文本所属的类别判定新文本所属的类别,具体的算法步骤如下:
一、:根据特征项集合重新描述训练文本向量
二、:在新文本到达后,根据特征词分词新文本,确定新文本的向量表示
三、:在训练文本集中选出与新文本最相似的 K 个文本,