算法图谱
❶ 学习数据挖掘知识图谱需要哪些知识基础
看看算法、语义相关的
比如分类、聚类、相似度等算法
❷ python中有哪些简单的算法
首先谢谢邀请,
python中有的算法还是比较多的?
python之所以火是因为人工智能的发展,人工智能的发展离不开算法!
感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。
这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。
第 1章从数学建模到人工智能
1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分
第2章 Python快速入门
2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科学计算库NumPy
3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存
第4章常用科学计算模块快速入门
4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结
第6章Python数据存储
6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语
第7章Python数据分析
7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结
第8章自然语言处理
8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战
第9章从回归分析到算法基础
9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制
第10章 从K-Means聚类看算法调参
10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战
第11章 从决策树看算法升级
11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类
第12章 从朴素贝叶斯看算法多变193
12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战
第13章 从推荐系统看算法场景
13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结
第14章 从TensorFlow开启深度学习之旅
14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!
❸ 知识图谱是什么有哪些应用价值
知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头网络和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢?
目录
1. 什么是知识图谱?
2. 知识图谱的表示
3. 知识图谱的存储
4. 应用
5. 挑战
6. 结语
1. 什么是知识图谱?
知识图谱本质上是语义网络,是一种基于图的数据结构,由节点(Point)和边(Edge)组成。在知识图谱里,每个节点表示现实世界中存在的“实体”,每条边为实体与实体之间的“关系”。知识图谱是关系的最有效的表示方式。通俗地讲,知识图谱就是把所有不同种类的信息(Heterogeneous Information)连接在一起而得到的一个关系网络。知识图谱提供了从“关系”的角度去分析问题的能力。
知识推理
推理能力是人类智能的重要特征,使得我们可以从已有的知识中发现隐含的知识, 一般的推理往往需要一些规则的支持【3】。例如“朋友”的“朋友”,可以推理出“朋友”关系,“父亲”的“父亲”可以推理出“祖父”的关系。再比如张三的朋友很多也是李四的朋友,那我们可以推测张三和李四也很有可能是朋友关系。当然,这里会涉及到概率的问题。当信息量特别多的时候,怎么把这些信息(side information)有效地与推理算法结合在一起才是最关键的。常用的推理算法包括基于逻辑(Logic) 的推理和基于分布式表示方法(Distributed Representation)的推理。随着深度学习在人工智能领域的地位变得越来越重要,基于分布式表示方法的推理也成为目前研究的热点。如果有兴趣可以参考一下这方面目前的工作进展【4,5,6,7】。
大数据、小样本、构建有效的生态闭环是关键
虽然现在能获取的数据量非常庞大,我们仍然面临着小样本问题,也就是样本数量少。假设我们需要搭建一个基于机器学习的反欺诈评分系统,我们首先需要一些欺诈样本。但实际上,我们能拿到的欺诈样本数量不多,即便有几百万个贷款申请,最后被我们标记为欺诈的样本很可能也就几万个而已。这对机器学习的建模提出了更高的挑战。每一个欺诈样本我们都是以很高昂的“代价”得到的。随着时间的推移,我们必然会收集到更多的样本,但样本的增长空间还是有局限的。这有区别于传统的机器学习系统,比如图像识别,不难拿到好几十万甚至几百万的样本。
在这种小样本条件下,构建有效的生态闭环尤其的重要。所谓的生态闭环,指的是构建有效的自反馈系统使其能够实时地反馈给我们的模型,并使得模型不断地自优化从而提升准确率。为了搭建这种自学习系统,我们不仅要完善已有的数据流系统,而且要深入到各个业务线,并对相应的流程进行优化。这也是整个反欺诈环节必要的过程,我们要知道整个过程都充满着博弈。所以我们需要不断地通过反馈信号来调整我们的策略。
6. 结语
知识图谱在学术界和工业界受到越来越多的关注。除了本文中所提到的应用,知识图谱还可以应用在权限管理,人力资源管理等不同的领域。在后续的文章中会详细地讲到这方面的应用。
参考文献
【1】De Abreu, D., Flores, A., Palma, G., Pestana, V., Pinero, J., Queipo, J., ... & Vidal, M. E. (2013). Choosing Between Graph Databases and RDF Engines for Consuming and Mining Linked Data. In COLD.
【2】User Behavior Tutorial
【3】刘知远 知识图谱——机器大脑中的知识库 第二章 知识图谱——机器大脑中的知识库
【4】Nickel, M., Murphy, K., Tresp, V., & Gabrilovich, E. A Review of Relational Machine Learning for Knowledge Graphs.
【5】Socher, R., Chen, D., Manning, C. D., & Ng, A. (2013). Reasoning with neural tensor networks for knowledge base completion. In Advances in Neural Information Processing Systems (pp. 926-934).
【6】Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In Advances in Neural Information Processing Systems (pp. 2787-2795).
【7】Jenatton, R., Roux, N. L., Bordes, A., & Obozinski, G. R. (2012). A latent factor model for highly multi-relational data. In Advances in Neural Information Processing Systems(pp. 3167-3175).
❹ 编程语言关系图谱 谁的影响力更大
1. 登陆http://dbpedia.org/snorql/
2. 输入
SELECT* WHERE{ ?pa <http://dbpedia.org/ontology/ProgrammingLanguage>. ?p<http://dbpedia.org/ontology/influenced>?influenced. }
3. 进入http://meyerweb.com/eric/tools/dencoder/页面
4. 导入excel中,然后再格式化. Export .CSV.,使用Force Atlas和Fruhterman-Reingold算法将其组合在一起。
5. 预览
使用Force Atlas + Force Atlas 2 + Fructerman-Reingold Algorithm算法,如同所示:
❺ 求翻译:微量元素图谱比对分析算法及数据库应用研究
要给分,要给分,重要的话说两遍
建立算法这是什么搭配啊
句子太长,你不累啊
Designing the comparision and analysis algorithms of spectral diagram of micronutrient and building the corresponding databases
will improve the objectivity, accuracy and efficiency of physical and chemical examination of micronutrient,
make up for the defect in micronutrient examination caused by regional difference and divergence of lab personnels' experience, and
provide a sharing and application platform for database resource of micronutrient examination and analysis.
❻ 图谱有哪些算法
图谱有哪些算法这是一个高性能的图形数据库,我之前也有介绍过。在此直接进行应用。之前我都是在Win10虚拟机中使用的,这里正好在安装的同时,也把步骤记录下来。
下载:https://neo4j.com/download/neo4j-desktop/?edition=desktop&flavour=osx&release=1.1.15&offline=true
正常操作后,可以启动管理界面。
Neo4j分为桌面版和社区版,个人比较偏向于桌面版,容易管理:
SDK安装:
Python API安装:
(base) zhanglipengdeMacBook-Pro:~ zhanglipeng$ sudo pip install neo4j-driver
Password:
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7.
The directory '/Users/zhanglipeng/Library/Caches/pip/http' or its parent directory is not owned by the current user and the cache has been disabled. Please check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag.
The directory '/Users/zhanglipeng/Library/Caches/pip' or its parent directory is not owned by the current user and caching wheels has been disabled. check the perm six
❼ 算法工程师(知识图谱方向)有前途吗
自然是有前途的
❽ 图计算引擎Neo4j和Graphscope有什么区别
Neo4j是单机系统,主要做图数据库。GraphScope是由阿里巴巴达摩院智能计算实验室研发的图计算平台,是全球首个一站式超大规模分布式图计算平台,并且还入选了中 国科学技术协会“科创中 国”平台。Graphscope的代码在github.com/alibaba/graphscope上开源。SSSP算法上,GraphScope单机模式下平均要比Neo4j快176.38倍,最快在datagen-9.2_zf数据集上快了292.2倍。
❾ 一张小波分析图谱,有大神能给解释一下么
左边的是5阶的DWT的细节系数图,右边是尺度1-127的CWT系数图。5阶DWT对应于尺度32的CWT,只是DWT使用了mallat算法,分为细节和逼近系数,数据量减半。这两张图都是用各自小波系数的绝对值着色的,左边的DWT在着色前还进行了量化编码。颜色深的小波系数绝对值大,跟阶次(level )没啥关系,关键你好像不熟悉小波的理论,这种图的解读就很费劲,你要稍微熟悉一些小波的应用,就知道通常在实际应用中不会用这种图来研究问题,这图就是显示着好玩的,做个PPT,糊弄一下外行。研究通常都是在剖面上进行的,你可以用小波的工具箱,那里的图除了你这种平面图,主要都是剖面上的,两个对照才容易解读。