当前位置:首页 » 操作系统 » rsa算法报告

rsa算法报告

发布时间: 2022-07-19 23:23:27

① RSA算法介绍

它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, Adi Shamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。它经历了各种攻击,至今未被完全攻破。

一、RSA算法 :

首先, 找出三个数, p, q, r,
其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数......
p, q, r 这三个数便是 private key

接着, 找出 m, 使得 rm == 1 mod (p-1)(q-1).....
这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了.....
再来, 计算 n = pq.......
m, n 这两个数便是 public key

编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n....
如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t),
则每一位数均小于 n, 然后分段编码......
接下来, 计算 b == a^m mod n, (0 <= b < n),
b 就是编码后的资料......

解码的过程是, 计算 c == b^r mod pq (0 <= c < pq),
于是乎, 解码完毕...... 等会会证明 c 和 a 其实是相等的 :)

如果第三者进行窃听时, 他会得到几个数: m, n(=pq), b......
他如果要解码的话, 必须想办法得到 r......
所以, 他必须先对 n 作质因数分解.........
要防止他分解, 最有效的方法是找两个非常的大质数 p, q,
使第三者作因数分解时发生困难.........

<定理>
若 p, q 是相异质数, rm == 1 mod (p-1) (q-1),
a 是任意一个正整数, b == a^m mod pq, c == b^r mod pq,
则 c == a mod pq

证明的过程, 会用到费马小定理, 叙述如下:
m 是任一质数, n 是任一整数, 则 n^m == n mod m
(换另一句话说, 如果 n 和 m 互质, 则 n^(m-1) == 1 mod m)
运用一些基本的群论的知识, 就可以很容易地证出费马小定理的........

<证明>
因为 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整数
因为在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍数, 也不是 q 的倍数时,
则 a^(p-1) == 1 mod p (费马小定理) =& gt; a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (费马小定理) =& gt; a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q- 1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q- 1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍数, 但不是 q 的倍数时,
则 a^(q-1) == 1 mod q (费马小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍数, 但不是 p 的倍数时, 证明同上

4. 如果 a 同时是 p 和 q 的倍数时,
则 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

这个定理说明 a 经过编码为 b 再经过解码为 c 时, a == c mod n (n = pq)....
但我们在做编码解码时, 限制 0 <= a < n, 0 <= c < n,
所以这就是说 a 等于 c, 所以这个过程确实能做到编码解码的功能.....

二、RSA 的安全性

RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。

三、 RSA的速度

由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。

四、 RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:

( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用 One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。在中提到了几种不同类型的攻击方法。

五、RSA的公共模数攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:

C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和 d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。

RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。

② 请较为详细地描述rsa加密算法的全过程

RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1

这样最终得到三个数: n d e

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。

rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。

rsa简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用rsa 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。

最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。

③ RSA算法的实现

RSA毕业设计论文
http://wenku..com/view/8b1804c42cc58bd63186bd77.html

④ rsa算法原理

RSA算法是最常用的非对称加密算法,它既能用于加密,也能用于数字签名。RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积。

我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:设计公私密钥(e,n)和(d,n)。

令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。

英文数字化。将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值。则得到分组后的key的明文信息为:11,05,25。

明文加密。用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文为11.26.16。

密文解密。用户B收到密文,若将其解密,只需要计算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
转成明文11.05.25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。

当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。

⑤ 一个RSA算法的加密运算,需要完整的演算过程。

我来回答你可以闭帖了,呵呵
看你题目的意思就是打算把republic这个词按照你的方法装换成数字例如是:X
p=3,q=11
n=p*q=33
t=(p-1)*(q-1)=20
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
我们可以取e=7
要求d*e%t==1(D*e除以t取余等于1),我们可以找到D=3
此时我们就有了三个数
n=33
d=3 公钥
e=7 私钥

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

我们可以对republic词按照你的方法装换成数字:X一位一位的加密。
加入X的第一位是6(别的同理)
则:M = 6
加密时:(c为加密后的数字)
c=(M**d)%n=(6^3)%33=216%33=18(商6余18),则6加密后就是18了
解密时:
设m=(c**e)%n则 m == M,
(18^7)%33=612220032%33=6(商18552122余6)
到此加密解密完成。
至于怎么把republic装换成X,把X装分成多少部分进行分批加密,你可以自己决定。但是加密的数字M 需要小于n

如果需要给你写个程序,留个Email,我空的时候写个发给你。

我个人给你个方法,因为n=33 >26(26个英文字母),所以可以把republic分成一个字母一个字母的加密。
按你的分发 REP 就分成数字
18 05 16
加密
(18^3)%33=5832%33= 24
(05^3)%33=125%33= 26
(16^3)%33=%33= 4
所以加密后就是
24 26 04 转换成字母就是 XZD
解密
(24^7)%33=4586471424%33=18
(26^7)%33=8031810176%33=05
(4^7)%33=16384%33=16
又变成 18 05 16 转换成字母就是 REP
是不是很简单啊~~

我如果不懂。空间里面有片文章,你可以看看,就知道我上面讲的那些是什么意思了。

RSA算法举例说明
http://hi..com/lsgo/blog/item/5fd0da24d495666834a80fb8.html

⑥ RSA算法的介绍

RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。1987年首次公布,当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

⑦ 解释RSA算法

RSA算法是最简单的一种可以公开公钥的算法,解释起来比较麻烦,你可以直接到这里来看RSA的详细介绍.
来自网络:
http://bk..com/view/7520.htm

⑧ RSA加密算法的实现 实验报告 邮箱:[email protected]

rem Simple RSA Program
rem (c) W.Buchanan
rem Jan 2002

Function check_prime(ByVal val As Long) As Boolean
Dim primes
primes = Array(1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397)
check_prime = False

For i = 0 To 78
If (val = primes(i)) Then
prime = True
End If
Next i
check_prime = prime
End Function

Function decrypt(ByVal c, ByVal n, ByVal d As Long)

Dim i, g, f As Long

On Error GoTo errorhandler

If (d Mod 2 = 0) Then
g = 1
Else
g = c
End If

For i = 1 To d / 2

f = c * c Mod n
g = f * g Mod n
Next i
decrypt = g

Exit Function
errorhandler:
Select Case Err.Number ' Evaluate error number.
Case 6
status.Text = "Calculation overflow, please select smaller values"
Case Else
status.Text = "Calculation error"
End Select

End Function

Function getD(ByVal e As Long, ByVal PHI As Long) As Long
Dim u(3) As Long
Dim v(3) As Long
Dim q, temp1, temp2, temp3 As Long

u(0) = 1
u(1) = 0
u(2) = PHI
v(0) = 0
v(1) = 1
v(2) = e

While (v(2) <> 0)
q = Int(u(2) / v(2))
temp1 = u(0) - q * v(0)
temp2 = u(1) - q * v(1)
temp3 = u(2) - q * v(2)
u(0) = v(0)
u(1) = v(1)
u(2) = v(2)
v(0) = temp1
v(1) = temp2
v(2) = temp3
Wend
If (u(1) < 0) Then
getD = (u(1) + PHI)
Else
getD = u(1)
End If
End Function

Function getE(ByVal PHI As Long) As Long
Dim great, e As Long

great = 0
e = 2

While (great <> 1)
e = e + 1
great = get_common_denom(e, PHI)
Wend
getE = e
End Function

Function get_common_denom(ByVal e As Long, ByVal PHI As Long)
Dim great, temp, a As Long

If (e > PHI) Then
While (e Mod PHI <> 0)
temp = e Mod PHI
e = PHI
PHI = temp
Wend
great = PHI
Else
While (PHI Mod e <> 0)
a = PHI Mod e
PHI = e
e = a
Wend
great = e
End If
get_common_denom = great
End Function

Private Sub show_primes()
status.Text = "1"
no_primes = 1
For i = 2 To 400
prime = True
For j = 2 To (i / 2)
If ((i Mod j) = 0) Then
prime = False
End If
Next j

If (prime = True) Then
no_primes = no_primes + 1
status.Text = status.Text + ", " + Str(i)
End If
Next i
status.Text = status.Text + vbCrLf + "Number of primes found:" + Str(no_primes)
End Sub

Private Sub Command1_Click()
Dim p, q, n, e, PHI, d, m, c As Long

p = Text1.Text
q = Text2.Text
If (check_prime(p) = False) Then
status.Text = "p is not a prime or is too large, please re-enter"
ElseIf (check_prime(q) = False) Then
status.Text = "q is not a prime or is too large, please re-enter"
Else
n = p * q
Text3.Text = n

PHI = (p - 1) * (q - 1)
e = getE((PHI))
d = getD((e), (PHI))
Text4.Text = PHI
Text5.Text = d
Text6.Text = e
m = Text7.Text

c = (m ^ e) Mod n
Text8.Text = c
m = decrypt(c, n, d)
Text9.Text = m
Label12.Caption = "Decrypt key =<" + Str(d) + "," + Str(n) + ">"
Label13.Caption = "Encrypt key =<" + Str(e) + "," + Str(n) + ">"
End If
End Sub

Private Sub Command2_Click()
End
End Sub

Private Sub Command3_Click()
frmBrowser.Show
End Sub

Private Sub Command4_Click()
Call show_primes
End Sub

热点内容
为什么工作站配置不好 发布:2025-01-21 02:53:38 浏览:445
我的世界服务器怕被破坏怎么办 发布:2025-01-21 02:33:15 浏览:932
linux下交叉编译实验 发布:2025-01-21 02:19:00 浏览:434
java培训班多少钱 发布:2025-01-21 02:17:23 浏览:335
帝豪gl哪个配置是电容屏 发布:2025-01-21 02:11:23 浏览:304
openwrt编译零基础 发布:2025-01-21 01:53:30 浏览:20
视频聊天室源码php 发布:2025-01-21 01:39:29 浏览:939
游戏脚本xp 发布:2025-01-21 01:25:48 浏览:210
cfa建模需要什么电脑配置 发布:2025-01-21 01:16:41 浏览:97
配置获取异常怎么办 发布:2025-01-21 01:16:29 浏览:642