当前位置:首页 » 操作系统 » tcp拥塞算法

tcp拥塞算法

发布时间: 2022-07-18 16:28:32

⑴ 在TCP的拥塞控制中,什么是慢开始、拥塞避免、快重传和快恢复算法

慢开始:在主机刚刚开始发送报文段时可先将拥塞窗口cwnd设置为一个最大报文段MSS的数值。在每收到一个对新的报文段的确认后,将拥塞窗口增加至多一个MSS的数值。

拥塞避免:当拥塞窗口值大于慢开始门限时,停止使用慢开始算法而改用拥塞避免算法。

快重传算法:发送端只要一连收到三个重复的ACK即可断定有分组丢失了,就应该立即重传丢手的报文段而不必继续等待为该报文段设置的重传计时器的超时。

接下来执行的不是慢启动算法而是拥塞避免算法。这就是快速恢复算法。.



防止拥塞的方法

(1)在传输层可采用:重传策略、乱序缓存策略、确认策略、流控制策略和确定超时策略。

(2)在网络层可采用:子网内部的虚电路与数据报策略、分组排队和服务策略、分组丢弃策略、路由算法和分组生存管理。

(3)在数据链路层可采用:重传策略、乱序缓存策略、确认策略和流控制策略。

⑵ 常见的tcp拥塞控制有哪几种算法

慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round Trip Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下:
开始 ---> cwnd = 1
经过1个RTT后 ---> cwnd = 2*1 = 2
经过2个RTT后 ---> cwnd = 2*2= 4
经过3个RTT后 ---> cwnd = 4*2 = 8
如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。
拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。
上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?
首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:
1.把ssthresh降低为cwnd值的一半
2.把cwnd重新设置为1
3.重新进入慢启动过程。
从整体上来讲,TCP拥塞控制窗口变化的原则是AIMD原则,即加法增大、乘法减小。可以看出TCP的该原则可以较好地保证流之间的公平性,因为一旦出现丢包,那么立即减半退避,可以给其他新建的流留有足够的空间,从而保证整个的公平性。
其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:
1.把ssthresh设置为cwnd的一半
2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)
3.重新进入拥塞避免阶段。
后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。
具体来说快速恢复的主要步骤是:
1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。
2.再收到重复的ACK时,拥塞窗口增加1。
3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。
快速重传算法首次出现在4.3BSD的Tahoe版本,快速恢复首次出现在4.3BSD的Reno版本,也称之为Reno版的TCP拥塞控制算法。
可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。
SACK就是改变TCP的确认机制,最初的TCP只确认当前已连续收到的数据,SACK则把乱序等信息会全部告诉对方,从而减少数据发送方重传的盲目性。比如说序号1,2,3,5,7的数据收到了,那么普通的ACK只会确认序列号4,而SACK会把当前的5,7已经收到的信息在SACK选项里面告知对端,从而提高性能,当使用SACK的时候,NewReno算法可以不使用,因为SACK本身携带的信息就可以使得发送方有足够的信息来知道需要重传哪些包,而不需要重传哪些包。

⑶ TCP的拥塞控制算法中,请简述慢开始算法和拥塞避免算法的基本思想

慢开始算法:
cwnd每收到一个acknowledge增加1
拥塞避免算法
当cwnd达到或者超过当前设定的threshold后,cwnd每个RTT增加1。
如果发生timeout, cwnd = 1,threshold=cwnd/2. 重新进入慢开始。
如果收到3个重复的acknowledgement, cwnd = threshold = cwnd/2.

⑷ TCP拥塞控制

以下资料参考:为了防止网络的拥塞现象,TCP提出了一系列的拥塞控制机制。最初由V. Jacobson在1988年的论文中提出的TCP的拥塞控制由“慢启动(Slow start)”和“拥塞避免(Congestion avoidance)”组成,后来TCP Reno版本中又针对性的加入了“快速重传(Fast retransmit)”、“快速恢复(Fast Recovery)”算法,再后来在TCP NewReno中又对“快速恢复”算法进行了改进,近些年又出现了选择性应答( selective acknowledgement,SACK)算法,还有其他方面的大大小小的改进,成为网络研究的一个热点。TCP的拥塞控制主要原理依赖于一个拥塞窗口(cwnd)来控制,在之前我们还讨论过TCP还有一个对端通告的接收窗口(rwnd)用于流量控制。窗口值的大小就代表能够发送出去的但还没有收到ACK的最大数据报文段,显然窗口越大那么数据发送的速度也就越快,但是也有越可能使得网络出现拥塞,如果窗口值为1,那么就简化为一个停等协议,每发送一个数据,都要等到对方的确认才能发送第二个数据包,显然数据传输效率低下。TCP的拥塞控制算法就是要在这两者之间权衡,选取最好的cwnd值,从而使得网络吞吐量最大化且不产生拥塞。由于需要考虑拥塞控制和流量控制两个方面的内容,因此TCP的真正的发送窗口=min(rwnd, cwnd)。但是rwnd是由对端确定的,网络环境对其没有影响,所以在考虑拥塞的时候我们一般不考虑rwnd的值,我们暂时只讨论如何确定cwnd值的大小。关于cwnd的单位,在TCP中是以字节来做单位的,我们假设TCP每次传输都是按照MSS大小来发送数据的,因此你可以认为cwnd按照数据包个数来做单位也可以理解,所以有时我们说cwnd增加1也就是相当于字节数增加1个MSS大小。慢启动:最初的TCP在连接建立成功后会向网络中发送大量的数据包,这样很容易导致网络中路由器缓存空间耗尽,从而发生拥塞。因此新建立的连接不能够一开始就大量发送数据包,而只能根据网络情况逐步增加每次发送的数据量,以避免上述现象的发生。具体来说,当新建连接时,cwnd初始化为1个最大报文段(MSS)大小,发送端开始按照拥塞窗口大小发送数据,每当有一个报文段被确认,cwnd就增加1个MSS大小。这样cwnd的值就随着网络往返时间(Round Trip Time,RTT)呈指数级增长,事实上,慢启动的速度一点也不慢,只是它的起点比较低一点而已。我们可以简单计算下: 开始 ---> cwnd = 1 经过1个RTT后 ---> cwnd = 2*1 = 2 经过2个RTT后 ---> cwnd = 2*2= 4 经过3个RTT后 ---> cwnd = 4*2 = 8如果带宽为W,那么经过RTT*log2W时间就可以占满带宽。拥塞避免:从慢启动可以看到,cwnd可以很快的增长上来,从而最大程度利用网络带宽资源,但是cwnd不能一直这样无限增长下去,一定需要某个限制。TCP使用了一个叫慢启动门限(ssthresh)的变量,当cwnd超过该值后,慢启动过程结束,进入拥塞避免阶段。对于大多数TCP实现来说,ssthresh的值是65536(同样以字节计算)。拥塞避免的主要思想是加法增大,也就是cwnd的值不再指数级往上升,开始加法增加。此时当窗口中所有的报文段都被确认时,cwnd的大小加1,cwnd的值就随着RTT开始线性增加,这样就可以避免增长过快导致网络拥塞,慢慢的增加调整到网络的最佳值。上面讨论的两个机制都是没有检测到拥塞的情况下的行为,那么当发现拥塞了cwnd又该怎样去调整呢?首先来看TCP是如何确定网络进入了拥塞状态的,TCP认为网络拥塞的主要依据是它重传了一个报文段。上面提到过,TCP对每一个报文段都有一个定时器,称为重传定时器(RTO),当RTO超时且还没有得到数据确认,那么TCP就会对该报文段进行重传,当发生超时时,那么出现拥塞的可能性就很大,某个报文段可能在网络中某处丢失,并且后续的报文段也没有了消息,在这种情况下,TCP反应比较“强烈”:1.把ssthresh降低为cwnd值的一半2.把cwnd重新设置为13.重新进入慢启动过程。从整体上来讲,TCP拥塞控制窗口变化的原则是AIMD原则,即加法增大、乘法减小。可以看出TCP的该原则可以较好地保证流之间的公平性,因为一旦出现丢包,那么立即减半退避,可以给其他新建的流留有足够的空间,从而保证整个的公平性。其实TCP还有一种情况会进行重传:那就是收到3个相同的ACK。TCP在收到乱序到达包时就会立即发送ACK,TCP利用3个相同的ACK来判定数据包的丢失,此时进行快速重传,快速重传做的事情有:1.把ssthresh设置为cwnd的一半2.把cwnd再设置为ssthresh的值(具体实现有些为ssthresh+3)3.重新进入拥塞避免阶段。后来的“快速恢复”算法是在上述的“快速重传”算法后添加的,当收到3个重复ACK时,TCP最后进入的不是拥塞避免阶段,而是快速恢复阶段。快速重传和快速恢复算法一般同时使用。快速恢复的思想是“数据包守恒”原则,即同一个时刻在网络中的数据包数量是恒定的,只有当“老”数据包离开了网络后,才能向网络中发送一个“新”的数据包,如果发送方收到一个重复的ACK,那么根据TCP的ACK机制就表明有一个数据包离开了网络,于是cwnd加1。如果能够严格按照该原则那么网络中很少会发生拥塞,事实上拥塞控制的目的也就在修正违反该原则的地方。具体来说快速恢复的主要步骤是:1.当收到3个重复ACK时,把ssthresh设置为cwnd的一半,把cwnd设置为ssthresh的值加3,然后重传丢失的报文段,加3的原因是因为收到3个重复的ACK,表明有3个“老”的数据包离开了网络。 2.再收到重复的ACK时,拥塞窗口增加1。3.当收到新的数据包的ACK时,把cwnd设置为第一步中的ssthresh的值。原因是因为该ACK确认了新的数据,说明从重复ACK时的数据都已收到,该恢复过程已经结束,可以回到恢复之前的状态了,也即再次进入拥塞避免状态。快速重传算法首次出现在4.3BSD的Tahoe版本,快速恢复首次出现在4.3BSD的Reno版本,也称之为Reno版的TCP拥塞控制算法。可以看出Reno的快速重传算法是针对一个包的重传情况的,然而在实际中,一个重传超时可能导致许多的数据包的重传,因此当多个数据包从一个数据窗口中丢失时并且触发快速重传和快速恢复算法时,问题就产生了。因此NewReno出现了,它在Reno快速恢复的基础上稍加了修改,可以恢复一个窗口内多个包丢失的情况。具体来讲就是:Reno在收到一个新的数据的ACK时就退出了快速恢复状态了,而NewReno需要收到该窗口内所有数据包的确认后才会退出快速恢复状态,从而更一步提高吞吐量。SACK就是改变TCP的确认机制,最初的TCP只确认当前已连续收到的数据,SACK则把乱序等信息会全部告诉对方,从而减少数据发送方重传的盲目性。比如说序号1,2,3,5,7的数据收到了,那么普通的ACK只会确认序列号4,而SACK会把当前的5,7已经收到的信息在SACK选项里面告知对端,从而提高性能,当使用SACK的时候,NewReno算法可以不使用,因为SACK本身携带的信息就可以使得发送方有足够的信息来知道需要重传哪些包,而不需要重传哪些包。

⑸ TCP采用哪些机制来实现可靠数据传输、流控和拥塞控制

1.采用面向连接的三次握手实现可靠对象传输。
2.使用数据窗口机制协商队列大小实现数据队列传输。
3.通过序列化应答和必要时重发数据包,TCP 为应用程序提供了可靠的传输流和虚拟连接服务。

下面是找到的长篇大论中比较好的文章:

一、TCP协议

1、TCP 通过以下方式提供可靠性:

◆ 应用程序分割为TCP认为最合适发送的数据块。由TCP传递给IP的信息单位叫做报文段。
◆ 当TCP发出一个报文段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能记时收到一个确认,它 就重发这个报文段。
◆ 当TCP收到发自TCP连接另一端的数据,它将发送一个确认。这个确认不是立即发送,通常延迟几分之一秒。
◆ TCP将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化如果收到报文段的检验和有差错,TCP将丢弃这个报文段和不确认收到这个报文段。
◆ 既然TCP报文段作为IP数据报来传输,而IP数据报的到达可能失序,因此TCP报文段的到达也可能失序。如果必要,TCP将对收到的数据进行排序,将收到的数据以正确的顺序交给应用层。
◆ 既然IP数据报会发生重复,TCP连接端必须丢弃重复的数据。
◆ TCP还能提供流量控制,TCP连接的每一方都有固定大小的缓冲空间。TCP的接收端只允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲区溢出。
另外,TCP对字节流的内容不作任何解释。

2、TCP首部:
TCP数据被封装在一个IP数据报中,格式如下:
IP首部20 TCP首部20 TCP首部

TCP首部格式如下:
16位源端口号 16位目的端口号
32位序号
32位确认序号
4位首部长度 保留6位 U
R
G A
C
K P
S
H R
S
T S
Y
N F
I
N 16位窗口大小
16位检验和 16位紧急指针
选项
数据

说明:
(1)每个TCP段都包括源端和目的端的端口号,用于寻找发送端和接收端的应用进程。这两个值加上IP首部的源端IP地址和目的端IP地址唯一确定一个TCP连接。
(2)序号用来标识从TCP发送端向接收端发送的数据字节流,它表示在这个报文段中的第一个数据字节。如果将字节流看作在两个应用程序间的单向流动,则TCP用序号对每个字节进行计数。
(3)当建立一个新连接时,SYN标志变1。序号字段包含由这个主机选择的该连接的初始序号ISN,该主机要发送数据的第一个字节的序号为这个ISN加1,因为SYN标志使用了一个序号。
(4)既然每个被传输的字节都被计数,确认序号包含发送确认的一端所期望收到的下一个序号。因此,确认序号应当时上次已成功收到数据字节序号加1。只有ACK标志为1时确认序号字段才有效。
(5)发送ACK无需任何代价,因为32位的确认序号字段和ACK标志一样,总是TCP首部的一部分。因此一旦一个连接建立起来,这个字段总是被设置,ACK标志也总是被设置为1。
(6)TCP为应用层提供全双工的服务。因此,连接的每一端必须保持每个方向上的传输数据序号。
(7)TCP可以表述为一个没有选择确认或否认的华东窗口协议。因此TCP首部中的确认序号表示发送方已成功收到字节,但还不包含确认序号所指的字节。当前还无法对数据流中选定的部分进行确认。
(8)首部长度需要设置,因为任选字段的长度是可变的。TCP首部最多60个字节。
(9)6个标志位中的多个可同时设置为1
◆ URG-紧急指针有效
◆ ACK-确认序号有效
◆ PSH-接收方应尽快将这个报文段交给应用层
◆ RST-重建连接
◆ SYN-同步序号用来发起一个连接
◆ FIN-发送端完成发送任务
(10)TCP的流量控制由连接的每一端通过声明的窗口大小来提供。窗口大小为字节数,起始于确认序号字段指明的值,这个值是接收端期望接收的字节数。窗口大小是一个16为的字段,因而窗口大小最大为65535字节。
(11)检验和覆盖整个TCP报文端:TCP首部和TCP数据。这是一个强制性的字段,一定是由发送端计算和存储,并由接收端进行验证。TCP检验和的计算和UDP首部检验和的计算一样,也使用伪首部。
(12)紧急指针是一个正的偏移量,黄蓉序号字段中的值相加表示紧急数据最后一个字节的序号。TCP的紧急方式是发送端向另一端发送紧急数据的一种方式。
(13)最常见的可选字段是最长报文大小MMS,每个连接方通常都在通信的第一个报文段中指明这个选项。它指明本端所能接收的最大长度的报文段。

二、TCP连接的建立和终止

1、建立连接协议
(1) 请求端发送一个SYN段指明客户打算连接的服务器的端口,隐疾初始序号(ISN),这个SYN报文段为报文段1。
(2) 服务器端发回包含服务器的初始序号的SYN报文段(报文段2)作为应答。同时将确认序号设置为客户的ISN加1以对客户的SYN报文段进行确认。一个SYN将占用一个序号。
(3) 客户必须将确认序号设置为服务器的ISN加1以对服务器的SYN报文段进行确认(报文段3)。
这3个报文段完成连接的建立,称为三次握手。发送第一个SYN的一端将执行主动打开,接收这个SYN并发回下一个SYN的另一端执行被动打开。

2、连接终止协议
由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
(1) TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。
(2) 服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
(3) 服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。
(4) 客户段发回确认,并将确认序号设置为收到序号加1(报文段7)。

3、连接建立的超时
如果与服务器无法建立连接,客户端就会三次向服务器发送连接请求。在规定的时间内服务器未应答,则连接失败。

4、最大报文段长度MSS
最大报文段长度表示TCP传往另一端的最大块数据的长度。当一个连接建立时,连接的双方都要通告各自的MSS。
一般,如果没有分段发生,MSS还是越大越好。报文段越大允许每个报文段传送的数据越多,相对IP和TCP首部有更高的网络利用率。当TCP发送一个 SYN时,它能将MSS值设置为外出接口的MTU长度减去IP首部和TCP首部长度。对于以太网,MSS值可达1460。
如果目的地址为非本地的,MSS值通常默认为536,是否本地主要通过网络号区分。MSS让主机限制另一端发送数据报的长度,加上主机也能控制它发送数据报的长度,这将使以较小MTU连接到一个网络上的主机避免分段。

5、 TCP的半关闭
TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力,这就是TCP的半关闭。
客户端发送FIN,另一端发送对这个FIN的ACK报文段。当收到半关闭的一端在完成它的数据传送后,才发送FIN关闭这个方向的连接,客户端再对这个FIN确认,这个连接才彻底关闭。

6、2MSL连接
TIME_WAIT状态也称为2MSL等待状态。每个TCP必须选择一个报文段最大生存时间(MSL)。它是任何报文段被丢弃前在网络的最长时间。
处理原则:当TCP执行一个主动关闭,并发回最后一个ACK,该连接必须在TIME_WAIT状态停留的时间为2MSL。这样可以让TCP再次发送最后的ACK以避免这个ACK丢失(另一端超时并重发最后的FIN)。这种2MSL等待的另一个结果是这个TCP连接在2MSL等待期间,定义这个连接的插口不能被使用。

7、平静时间
TCP在重启的MSL秒内不能建立任何连接,这就是平静时间。
8、FIN_WAIT_2状态
在FIN_WAIT_2状态我们已经发出了FIN,并且另一端也对它进行了确认。只有另一端的进程完成了这个关闭,我们这端才会从 FIN_WAIT_2状态进入TIME_WAIT状态。这意味着我们这端可能永远保持这个状态,另一端也将处于CLOSE_WAIT状态,并一直保持这个状态直到应用层决定进行关闭。
9、复位报文段
TCP首部的RST位是用于复位的。一般,无论合适一个报文端发往相关的连接出现错误,TCP都会发出一个复位报文段。主要情况:
(1)到不存在的端口的连接请求;
(2)异常终止一个连接。

10、同时打开
为了处理同时打开,对于同时打开它仅建立一条连接而不是两条连接。两端几乎在同时发送SYN,并进入SYN_SENT状态。当每一端收到SYN时,状态变为SYN_RCVD,同时他们都再发SYN并对收到的SYN进行确认。当双方都收到SYN及相应的ACK时,状态都变为ESTABLISHED。一个同时打开的连接需要交换4个报文段,比正常的三次握手多了一次。

11、 同时关闭
当应用层发出关闭命令,两端均从ESTABLISHED变为FIN_WAIT_1。这将导致双方各发送一个FIN,两个FIN经过网络传送后分别到达另一端。收到FIN后,状态由FIN_WAIT_1变为CLOSING,并发送最后的ACK。当收到最后的ACK,状态变为TIME_WAIT。同时关闭和正常关闭的段减缓数目相同。

12、TCP选项
每个选项的开始是1字节的kind字段,说明选项的类型。

Kind=1:选项表结束(1字节) Kind=1:无操作(1字节) Kind=2:最大报文段长度(4字节) Kind=3:窗口扩大因子(4字节) Kind=8:时间戳(10字节)
三、TCP的超时和重传

对于每个TCP连接,TCP管理4个不同的定时器。
(1) 重传定时器用于当希望收到另一端的确认。
(2) 坚持定时器使窗口大小信息保持不断流动,即使另一端关闭了其接收窗口。
(3) 保活定时器可检测到一个空闲连接的另一端何时崩溃或重启。
(4) 2MSL定时器测量一个连接处于TIME_WAIT状态的时间。

1、往返时间测量
TCP超时和重传重最重要的就是对一个给定连接的往返时间(RTT)的测量。由于路由器和网络流量均会变化,因此TCP应该跟踪这些变化并相应地改变超时时间。首先TCP必须测量在发送一个带有特别序号地字节和接收到包含该字节地确认之间的RTT。

2、拥塞避免算法
该算法假定由于分组收到损坏引起的丢失是非常少的,因此分组丢失就意味着在源主机和目的主机之间的某处网络上发生了阻塞。有两种分组丢失的指示:发生超时和收到重复的确认。拥塞避免算法需要对每个连接维持两个变量:一个拥塞窗口cwnd和一个慢启动门限ssthresh。
(1) 对一个给定的连接,初始化cwnd为1个报文段,ssthresh为65535个字节。
(2) TCP输出例程的输出不能超过cwnd和接收方通告窗口的大小。拥塞避免是发送方使用的流量控制。前者是发送方感受到的网络拥塞的估计,而后者则与接收方在该连接上的可用缓存大小有关。
(3) 当拥塞发生时,ssthresh被设置为当前窗口大小的一般(cwnd和接收方通告窗口大小的最小值,但最小为2个报文段)。此外,如果是超时引起了拥塞,则cwnd被设置为1个报文段。
(4) 当新的数据被对方确认时,就增加cwnd,但增加的方法依赖与是否正在进行慢启动或拥塞避免。如果cwnd小于或等于ssthresh,则正在进行慢启动,否则正在进行拥塞避免。

3、快速重传和快速恢复算法
如果我们一连串收到3个或以上的重复ACK,就非常可能是一个报文段丢失了。于是我们就重传丢失的数据报文段,而无需等待超时定时器溢出。
(1) 当收到第3个重复的ACK时,将ssthresh设置为当前拥塞窗口cwnd的一半,重传丢失的报文段,设置cwnd为ssthresh加上3倍的报文段大小。
(2) 每次收到另一个重复的ACK时,cwnd增加1个报文段大小并发送一个1个分组,如果允许的话。
(3)当下一个确认新数据的ACK到达时,设置cwnd为ssthresh,这个ACK应该时在进行重传后的一个往返时间内对步骤1重重传的确认。另外,这个 ACK也应该是对丢失的分组和收到的第一个重复的ACK之间的所有中间报文段的确认。

4、 ICMP差错
TCP如何处理一个给定的连接返回的ICMP差错。TCP能够遇到的最常见的ICMP差错就是源站抑制、主机不可达和网络不可达。
(1) 一个接收到的源站抑制引起拥塞窗口cwnd被置为1个报文段大小来发起慢启动,但是慢启动门限ssthresh没有变化,所以窗口将打开直到它开放了所有的通路或者发生了拥塞。
(2) 一个接收到的主机不可达或网络不可达实际都被忽略,因为这两个差错都被认为是短暂现象。TCP试图发送引起该差错的数据,尽管最终有可能会超时。

5、重新分组:
当TCP超时并重传时,它并不一定要重传同样的报文段,相反,TCP允许进行重新分组而发送一个较大的报文段。这是允许的,因为TCP是使用字节序号而不是报文段序号来进行识别它所要发送的数据和进行确认。

四、TCP的坚持定时器

ACK的传输并不可靠,也就是说,TCP不对ACK报文段进行确认,TCP只确认那些包含数据的ACK报文段。为了防止因为ACK报文段丢失而双方进行等待的问题,发送方用一个坚持定时器来周期性地向接收方查询。这些从发送方发出地报文段称为窗口探查。

五、TCP的保活定时器
如果一个给定的连接在2小时内没有任何动作,那么服务器就向客户发送一个探查报文段。客户主机必须处于以下4个状态之一。
(1) 客户主机依然正常运行,并从服务器可达。客户的TCP响应正常,而服务器也知道对方的正常工作的。服务器在2小时内将保活定时器复位。
(2) 客户主机已经崩溃,并且关闭或者正在重新启动。在任何一种情况下,客户的TCP都没有响应。服务器将不能收到对探查的响应,并在75秒后超时。总共发送10个探查,间隔75秒。
(3) 客户主机崩溃并已经重新启动。这是服务器将收到一个对其保活探查的响应,但这个响应是一个复位,使得服务器终止这个连接。
(4) 客户主机正常运行,但是从服务器不可达。

六、TCP的一些性能

1、 路径MTU发现:
TCP的路径MTU发现按如下方式进行:在连接建立时,TCP使用输出接口或对段声明的MSS中的最下MTU作为其实的报文段大小。路径MTU发现不允许TCP超过对端声明的MSS。如果对端没有指定一个MSS,则默认为536。
一旦选定了起始的报文段大小,在该连接上的所有被TCP发送的IP数据报都将被设置DF位。如果中间路由器需要对一个设置了DF标志的数据报进行分片,它就丢弃这个数据报,并产生一个ICMP的“不能分片”差错。
如果收到这个ICMP差错,TCP就减少段大小并进行重传。如果路由器产生的是一个较新的该类ICMP差错,则报文段大小被设置位下一跳的MTU减去 IP和TCP的首部长度。如果是一个较旧的该类ICMP差错,则必须尝试下一个可能的最小MTU。

2、 长肥管道
一个连接的容量=带宽X时延(RTT)。具有大的带宽时延乘积的网络称为长肥网络(LFN)。一个运行在LFN的TCP连接称为长肥管道。管道可以被水平拉长(一个长的RTT),或被垂直拉高(较高的带宽),或两个方向拉伸。

3、窗口扩大选项:
窗口扩大选项使TCP的窗口定义从16位增加到32位,这并不是通过修改TCP首部来实现的,TCP首部仍然使用16位,而是通过定义一个选项实现对16位的扩大操作来完成的。

4、时间戳选项:
时间戳选项使发送方在每个报文段中放置一个时间戳值。接收方在确认中返回这个数值,从而允许发送方为每一个收到的ACK计算RTT。

⑹ tcp/ip采用什么方法进行拥塞控制

TCP window机制

⑺ TCP协议采取了哪些机制来进行拥塞控制

最初的TCP协议只有基于窗口的流控制(flow control)机制而没有拥塞控制机制,流控制是一种局部控制机制,其参与者仅仅是发送方和接收方,它只考虑了接收端的接收能力,而没有考虑到网络的传输能力;而拥塞控制则注重于整体,其考虑的是整个网络的传输能力,是一种全局控制机制。 拥塞控制机制使得TCP连接在网络发生拥塞时回退(back off),也就是说TCP源端会对网络发出的拥塞指示(congestion notification)(例如丢包、重复的ACK等)作出响应。 针对TCP在控制网络拥塞方面的不足,后来又提出了“慢启动”(Slow Start)和“拥塞避免”(Congestion Avoidance)算法。 TCP Reno版本增加了“快速重传 ”(Fast Retransmit)、“快速恢复”(Fast Recovery)算法,避免了网络拥塞不严重时采用“慢启动”算法而造成过大地减小发送窗口尺寸的现象,这样TCP的拥塞控制就由这4个核心部分组成。 近几年又出现TCP的改进版本如NewReno和选择性应答(selective acknowledgement,SACK)等。

⑻ 如何在运行的内核中选择tcp拥塞控制算法

先查看本机支持的拥赛控制算法,命令:
cat /proc/sys/net/ipv4/tcp_allowed_congestion_control
如果支持,再以root帐号运行命令:
echo "vegas" >/proc/sys/net/ipv4/tcp_congestion_control

⑼ TCP拥塞窗口的问题

TCP拥塞控制最开始采用慢开始算法,拥塞窗口值cwnd从1开始按指数增加,1、2、4、8(第1——4次的值);这时达到了ssthresh的初始值8,转而采用拥塞避免算法,拥塞窗口值cwnd从ssthresh初始值8按线性+1增加,因此为9、10、11、12(第4——8次的值);到了cwnd=12时网络发生超时,这时改ssthreash的值为发生超时时cwnd的值的一半(即为12/2=6),并重新采用慢开始算法,改cwnd的值为1(这是第9次的值),然后cnwd的值依然按指数增加,2、4(第10、11次),理论上按这个算法再增加就是cnwd=8了,超过了ssthresh=6,所以第12次开始改为拥塞避免算法、cwnd的值从6开始按线性+1,即为6、7、8、9(第12——15次)。
纯手打,希望能帮助你理解。

⑽ 安卓cpu优化tcp拥塞算法cubic和reno怎么选择

  1. 上述具体的论文可以参考:CUBIC: A New TCP-Friendly High-Speed TCP Variant

  2. 1. tcp cubic数学模型

  3. CUBIC在设计上简化了BIC-TCP的窗口调整算法,在BIC-TCP的窗口调整中会出现一个凹和凸(这里的凹和凸指的是数学意义上的凹和凸,凹函数/凸函数)的增长曲线,CUBIC使用了一个三次函数(即一个立方函数),在三次函数曲线中同样存在一个凹和凸的部分,该曲线形状和BIC-TCP的曲线图十分相似,于是该部分取代BIC-TCP的增长曲线。另外,CUBIC中最关键的点在于它的窗口增长函数仅仅取决于连续的两次拥塞事件的时间间隔值,从而窗口增长完全独立于网络的时延RTT,之前讲述过的HSTCP存在严重的RTT不公平性,而CUBIC的RTT独立性质使得CUBIC能够在多条共享瓶颈链路的TCP连接之间保持良好的RRTT公平性。

  4. 来看下具体细节:当某次拥塞事件发生时,Wmax设置为此时发生拥塞时的窗口值,然后把窗口进行乘法减小,乘法减小因子设为β,当从快速恢复阶段退出然后进入到拥塞避免阶段,此时CUBIC的窗口增长开始按照“凹”式增长曲线进行增长,该过程一直持续直到窗口再次增长到Wmax,紧接着,该函数转入“凸”式增长阶段。该方式的增长可以使得窗口一直维持在Wmax附近,从而可以达到网络带宽的高利用率和协议本身的稳定性。

  5. 窗口的增长函数如下:

  6. W(t)=C*(t-K)3+Wmax,其中C和β为常量。

  7. t为当前时间距上一次窗口减小的时间差,而K就代表该函数从W增长到Wmax的时间周期,。

  8. 当收到ACK后,CUBIC计算利用该算法计算下一个RTT内的窗口增长速度,即计算W(t+RTT),该值将作为cwnd的目标值,根据cwnd的大小,CUBIC将进入三种不同模式,如果cwnd会小于在标准TCP下经过上次拥塞之后的时刻t窗口将会达到的值(该值是通过标准TCP的窗口增长函数计算出来的),那么CUBIC就处于标准TCP模式,如果小于Wmax,那么位于凹阶段的,如果大于Wmax,那么处于凸阶段。

  9. tcp cubic 内核源代码调用逻辑

  10. CUBIC整体架构调用的逻辑如下:

  11. 1. 连接每收到一个ack,则调用tcp_ack

  12. 2. tcp_ack会调用bictcp_acked,用来更新cnt和delayed_ack(用来消除delay包的影响)

  13. 3. tcp_ack会调用bictcp_cong_avoid,这是分两种情况:

  14. (1)snd_cwnd小于慢启动阈值,处于慢启动阶段,则调用tcp_slow_start

  15. (2)snd_cwnd大于慢启动阈值,处于拥塞避免阶段,则调用bictcp_update来更新bictcp,再调用tcp_cong_avoid_ai

  16. 4. tcp_ack中如果检测到丢包,进入拥塞处理阶段,则调用bictcp_recalc_ssthresh来更新慢启动阈值

  17. 5. tcp_ack中完成丢包重传后,退出拥塞处理阶段,则调用bictcp_undo_cwnd来更新

  18. 快速重传:tcp_ack中的丢包检测,即检测到连续3个重复ACK。

  19. 快速恢复:bictcp_undo_cwnd,直接把snd_cwnd更新为max(snd_cwnd,last_max_cwnd),和掉包前相差不大。

热点内容
服务器可以变电脑使用吗 发布:2025-01-15 19:40:29 浏览:200
传奇手游免费脚本 发布:2025-01-15 19:30:21 浏览:300
我国当前资源配置存在哪些问题 发布:2025-01-15 19:25:03 浏览:513
存储在哪里呀 发布:2025-01-15 19:11:39 浏览:450
pythonuniquelist 发布:2025-01-15 19:10:41 浏览:477
怎么升安卓系统下载 发布:2025-01-15 19:04:27 浏览:894
mcrypt扩展php 发布:2025-01-15 19:01:12 浏览:436
html源码解析 发布:2025-01-15 19:01:10 浏览:223
网络硬盘录像机存储 发布:2025-01-15 18:48:20 浏览:894
大学生java课程培训 发布:2025-01-15 18:45:53 浏览:487