linux线程状态
‘壹’ linux下怎么查看线程的运行情况
1、 cat /proc/${pid}/status 2、pstree -p ${pid} 3、top -p ${pid} 再按H 或者直接输入 top -bH -d 3 -p ${pid} top -H 手册中说:-H : Threads toggle 加上这个选项启动top,top一行显示一个线程
‘贰’ linux 怎么查看 线程状态
linux和windows不一样,好像没有真正意义上的线程吧,应该是进程模拟的
用这个命令可以看: ps -ef f
‘叁’ linux中的线程有哪几种状态
就绪:线程分配了CPU以外的全部资源,等待获得CPU调度
执行:线程获得CPU,正在执行
阻塞:线程由于发生I/O或者其他的操作导致无法继续执行,就放弃处理机,转入线程就绪队列
挂起:由于终端请求,操作系统的要求等原因,导致挂起。
‘肆’ Linux线程的几种结束方式
Linux线程的几种结束方式
Linux创建线程使用
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)
1
2
Linux线程的几种结束方式:
调用pthread_exit(exit_code),exit_code为线程退出的状态代码。同一进程下的其他线程可以通过pthread_join(exit_code)来使用。
函数start_routine使用return返回,与调用pthread_exit()作用相同。
线程被取消pthread_cancel()。
同一进程中的其他线程调用了exit(),,或者主线程从main函数返回。
‘伍’ 进程和线程的区别和linux运行状态查看简单
要了解二者的区别与联系,首先得对进程与线程有一个宏观上的了解。
进程,是并发执行的程序在执行过程中分配和管理资源的基本单位,是一个动态概念,竟争计算机系统资源的基本单位。每一个进程都有一个自己的地址空间,即进程空间或(虚空间)。进程空间的大小 只与处理机的位数有关,一个 16 位长处理机的进程空间大小为 216 ,而 32 位处理机的进程空间大小为 232 。进程至少有 5 种基本状态,它们是:初始态,执行态,等待状态,就绪状态,终止状态。
线程,在网络或多用户环境下,一个服务器通常需要接收大量且不确定数量用户的并发请求,为每一个请求都创建一个进程显然是行不通的,——无论是从系统资源开销方面或是响应用户请求的效率方面来看。因此,操作系统中线程的概念便被引进了。线程,是进程的一部分,一个没有线程的进程可以被看作是单线程的。线程有时又被称为轻权进程或轻量级进程,也是 CPU 调度的一个基本单位。
说到这里,我们对进程与线程都有了一个大体上的印象,现在开始说说二者大致的区别。
进程的执行过程是线状的,尽管中间会发生中断或暂停,但该进程所拥有的资源只为该线状执行过程服务。一旦发生进程上下文切换,这些资源都是要被保护起来的。这是进程宏观上的执行过程。而进程又可有单线程进程与多线程进程两种。我们知道,进程有 一个进程控制块 PCB ,相关程序段 和 该程序段对其进行操作的数据结构集 这三部分,单线程进程的执行过程在宏观上是线性的,微观上也只有单一的执行过程;而多线程进程在宏观上的执行过程同样为线性的,但微观上却可以有多个执行操作(线程),如不同代码片段以及相关的数据结构集。线程的改变只代表了 CPU 执行过程的改变,而没有发生进程所拥有的资源变化。出了 CPU 之外,计算机内的软硬件资源的分配与线程无关,线程只能共享它所属进程的资源。与进程控制表和 PCB 相似,每个线程也有自己的线程控制表 TCB ,而这个 TCB 中所保存的线程状态信息则要比 PCB 表少得多,这些信息主要是相关指针用堆栈(系统栈和用户栈),寄存器中的状态数据。进程拥有一个完整的虚拟地址空间,不依赖于线程而独立存在;反之,线程是进程的一部分,没有自己的地址空间,与进程内的其他线程一起共享分配给该进程的所有资源。
线程可以有效地提高系统的执行效率,但并不是在所有计算机系统中都是适用的,如某些很少做进程调度和切换的实时系统。使用线程的好处是有多个任务需要处理机处理时,减少处理机的切换时间;而且,线程的创建和结束所需要的系统开销也比进程的创建和结束要小得多。最适用使用线程的系统是多处理机系统和网络系统或分布式系统。
———————————-
1. 线程的执行特性。
线程只有 3 个基本状态:就绪,执行,阻塞。
线程存在 5 种基本操作来切换线程的状态:派生,阻塞,激活,调度,结束。
2. 进程通信。
单机系统中进程通信有 4 种形式:主从式,会话式,消息或邮箱机制,共享存储区方式。
主从式典型例子:终端控制进程和终端进程。
会话式典型例子:用户进程与磁盘管理进程之间的通信。
———————————-
参考书籍:计算机操作系统教程(第 3 版)清华大学出版社张尧学 史美林 张高
在java编程中就经常用到进程和线程的概念。
1、线程:程序中单独顺序的控制流
线程本身依靠进程运行,不能独立存在,线程是进程中的顺序控制流,只能使用系统分配给进程的资源和环境,线程没有独立的地址空间。
2、进程:执行中的程序
系统会为每个进程创建一个PID,一个进程可以包含一个或多个线程,一个进程至少包含一个线程,每个线程也会有自己的ID,但是这只是在它所属的进程之内,不属于系统ID。
3、单线程:程序中只存在一个线程,实际上函数运行的主方法就是一个主线程
4、多线程:就是在一个进程中运行多个任务,多线程的目的是为了更好地使用CPU资源。
前台和后台
我们这里也要注意前台和后台的区别,前台一般就是我们能够看到的正在执行的程序,一般系统的很多服务都是以后台的形式存在,也就是我们看不到它们在执行,但是它们一般都会常驻在系统中,直到关机才会结束。
linux中查看进程的ps和top
ps指令主要是用来查看目前系统中,有哪些进程正在执行,以及他们执行的状况。
ps -a 显示当前终端的所有进程信息
ps -u 以用户的格式显示进程信息
ps -x 显示后台进程运行的参数123
可以根据进程的PID来终止进程
kill 进程PIDkill -9 进程PID //强制终止进程12
此外可以使用killall命令以名字的方式来杀死进程
进程动态监控top
1、监视特定用户
先执行top命令,再输入u,之后再输入需要监视的用户,然后回车即可,你将会看到显示的进程都是你所指定的用户正在运行的程序
2、杀死特定进程
先执行top命令,再输入k,再输入你要杀死的进程ID,然后回车即可。
3、指定动态刷新时间
top -d 10 //指定系统更新进程的时间为10秒1
PS:我们从top显示的内容可以获取一些有用的信息,其中zombie代表的是僵尸进程,即计算机无法回收内存的进程,Load average显示的是当前计算机负载情况,当这些值很高的时候说明计算机CPU占用率很高,需要注意。还有显示了计算机存储空间的使用情况。其中PID=1的进程是系统初始运行的总进程,很多进程都是由它开启的,这是一个特别重要的进程。
监控网络状态信息
显示网络统计信息的命令netstat,此命令用来显示整个系统目前的网络情况,例如目前的链接,数据包传递数据或是路由表内容。
netstat -an //按一定顺序排列netstat -anp //加上p就会显示进程号和相关程序12
显示数据包经历历程命令
traceroute 域名或者IP1
特别要注意在windows下面该命令是tracert
route命令用于显示和操作IP路由表
‘陆’ Linux里面什么是mp线程
线程mp是非常有用的诊断java应用问题的工具,每一个java虚拟机都有及时生成显示所有线程在某一点状态的线程mp能力。虽然每个java虚拟机线程mp打印输出格式上略微有一些不同,但是线程mp的信息包含线程基本信息、线程的运行状态、标识、调用的堆栈;调用的堆栈包含完整的类名,所执行的方法,如果可能的话还有源代码的行数。
‘柒’ 什么是进程什么是线程linux系统中的进程有哪些状态如何获取系统中各进程的
进程线程都是操作系统的调度单位,有自己的数据结构。线程是比进程更小的调度单位,进程里可以有多个线程。进程间独占堆栈空间,同一进程内的多个线程可以共享堆空间。
‘捌’ linux怎么查看线程阻塞原因
linux查看线程阻塞原因:pthread_join一般主线程来调用,用来等待子线程退出,因为是等待,所以是阻塞的,一般主线程会依次join所有它创建的子线程。
1)执行top命令,或使用-H选项(显示所有线程),找到相关的高CPU的PID。
2)生成thread mp 快照(kill -3 PID)。
3)将top命令输出PID转换为HEX格式(16进制)。
4)在thread mp data中搜索nid=<Hex PID>。
5)分析受影响的thread和stack trace,精确定位代码。
特点:
Linux,全称GNU/Linux,是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX的多用户、多任务、支持多线程和多CPU的操作系统。伴随着互联网的发展,Linux得到了来自全世界软件爱好者、组织、公司的支持。
它除了在服务器方面保持着强劲的发展势头以外,在个人电脑、嵌入式系统上都有着长足的进步。使用者不仅可以直观地获取该操作系统的实现机制,而且可以根据自身的需要来修改完善Linux,使其最大化地适应用户的需要。
Linux不仅系统性能稳定,而且是开源软件。其核心防火墙组件性能高效、配置简单,保证了系统的安全。在很多企业网络中,为了追求速度和安全,Linux不仅仅是被网络运维人员当作服务器使用,甚至当作网络防火墙,这是Linux的一大亮点。
Linux具有开放源码、没有版权、技术社区用户多等特点,开放源码使得用户可以自由裁剪,灵活性高,功能强大,成本低。尤其系统中内嵌网络协议栈,经过适当的配置就可实现路由器的功能。这些特点使得Linux成为开发路由交换设备的理想开发平台。
‘玖’ 有人能教下我有关linux里面线程的知识吗
.线程的基本介绍
(1)线程的概述
线程与进程类似,也允许应用程序并发执行多个任务的一种机制。一个进程可以包含多个线程,同一程序中的所有线程共享同一份全局内存区域,线程之间没有真正意义的等级之分。同一个进程中的线程可以并发执行,如果处理器是多核的话线程也可以并行执行,如果一个线程因为等待I/O操作而阻塞,那么其他线程依然可以继续运行
(2)线程优于进程的方面
argv,environ
主线程栈
线程3的栈
线程2的栈
线程1的栈
共享函数库共享的内存
堆
未初始化的数据段
初始化数据段
文本
.进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用一些进程间通讯,在进程之间交换信息
.调用fork()来创建进程代价相对较高
线程很好的解决了上述俩个问题
.线程之间能够方便,快速的共享信息,只需将数据复制到共享(全局或堆)变量中即可
.创建线程比创建线程通常要快10甚至更多,线程创建之所以快,是因为fork创建进程时所需复制多个属性,而在线程中,这些属性是共享的。
(3)创建线程
启动程序时,产生的进程只有单条线程,我们称之为主线程
#include<pthread.h>
int pthread_create(pthread_t *thread,const pthread_attr_t *attr,void*(*start)(void *),void *arg);12
新线程通过调用带有arg的函数开始执行,调用pthread_create()的线程会继续执行该调用之后的语句。
(4)终止线程
可以以如下方式终止线程的运行
.线程调用pthread_exit()
.线程start函数执行return语句并返回指定值
.调用pthread_cancel()取消线程
.任意线程调用了exit(),或者主线程执行了return语句,都会导致进程中的所有线程立即终止
pthread_exit()函数可以终止线程,且其返回值可由另一线程通过调用pthread_join()获得
#include<pthread.h>void pthread_exit(void *retval);12
调用pthread_exit()相当于在线程的start函数中执行return,不同之处在于,pthread_exit()可以在任何地方调用,参数retval指定了线程的返回值
(5)获取线程ID
#include<pthread.h>pthread_t pthread_self(void);12
线程ID在应用程序中主要有如下用途
.不同的pthreads函数利用线程ID来标识要操作目标线程。
.在具体的应用程序中,以特定线程的线程ID作为动态数据结构的标签,这颇有用处,既可用来识别某个数据结构的创建者或属主线程,又可确定随后对该数据结构执行操作的具体线程
函数pthread_equal()可检查俩个线程的ID是否相同
#include<pthread.h>int pthread_equal(pthread_t t1,pthread_t t2);//如果相同返回非0值,否则返回0123
(6)连接已终止的线程
函数pthread_join()等待由thread表识的线程终止
#include<pthread.h>int pthread_join(pthread_t thread,void **retval);//返回0调用成功,否则失败123
如果pthread_join()传入一个之前已然连接过的线程ID,将会导致无法预知的行为,当相同线程ID在参与一次连接后恰好为另一新建线程所重用,再度连接的可能就是这个新线程
若线程未分离,则就应该使用pthread_join()来连接线程,否则会产生僵尸线程
pthrea_join()函数的要点
.线程之间的关系是对等的,所以任意线程都可以调用pthread_join()来连接其他线程
.pthread_join()无法针对任意线程,只能连接单个线程
(6)线程的分离
默认情况下线程都是可连接的,但有时候,我们并不关心线程退出的状态,我们可以调用pthread_detach()并向thread参数传入指定线程的的标识符,将该线程标记为处于分离状态
#include<pthread.h>int pthread_detach(pthread_t thread);//返回0成功,否则失败123
一旦线程处于分离状态,就不能在使用pthread_join()来获取其状态,也无法使其重返可连接状态
(7)在应用程序中如何来选择进程还是线程
.线程之间共享数据很简单,进程间的数据共享需要更多的投入
.创建线程要比创建进程块很多
.多线程编程时,需要确保调用线程安全的函数
.某个线程中的bug可能会危害进程中所有线程
.每个线程都在征用宿主进程中有限的虚拟地址空间
.在多线程应用中,需要小心使用信号
.除了数据,线程还可以共享文件描述符,信号处置,当前工作目录,以及用户ID和组ID
线程的同步
(1)保护共享变量访问:互斥量
线程的主要优势在于能够通过全局变量来共享信息,不过这种共享是有代价的。必须确保多个线程修改同一变量时,不会有其他线程也正在修改此变量,为避免线程更新时共享变量时所出现的问题,必须使用互斥量来确保同时仅有一个线程可以访问某项共享资源
(2)静态分配的互斥锁
互斥锁既可以像静态变量那样分配,也可以在运行时动态分配,互斥量属于pthread_mutex_t类型的变量,在使用之前必须对其初始化。对于静态分配的互斥量而言,可如下例所示,将PTHREAD_MUTEX_INITIALIZER赋给互斥量
pthread_mutex_t = PTHREAD_MUTEX_INITIALIZER;1
1.加锁和解锁互斥量
初始化之后,互斥量处于未锁定状态。函数pthread_mutex_lock()可以锁定某一互斥量
而函数pthread_mutex_unlock()则可以将一个互斥量解锁
#include<pthread.h>int pthread_mutex_lock(pthread_mutex_t *mutex);int pthread_mutex_unlock(pthread_mutex_t *mutex);//返回0成功,其他失败1234
要锁定互斥量,在调用pthread_mutex_lock()时需要指定互斥量,如果互斥量当前处于未锁定状态,则该调用将会立即返回,如果该互斥量已被其他线程锁定,那么该调用将会阻塞,直至互斥量被解锁
函数pthread_mutex_unlock()将解锁之前已遭调用线程锁定的互斥量
2.互斥量的性能
通常情况下,线程会花费更多的时间去做其他工作,对互斥量的加锁解锁相对要少的多,因此使用互斥量对大部分程序来说性能并无显着的影响
3.互斥量的死锁
当一个线程需要同时访问多个共享资源时,没个资源由不同的互斥索管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。如下图所示
线程A
1.pthread_mutex_lock(mutex1);
2.pthread_mutex_lock(mutex2);
线程2
1.pthread_mutex_lock(mutex2);
2.pthread_mutex_lock(mutex1);
每个线程都成功的锁住一个互斥量,接着试图对以为另一线程锁定的互斥量加锁,就会一直等下去
要避免此类死锁问题,最简单的就是定义互斥量的层级关系
‘拾’ linux 怎么查看一个进程的所有线程
1。 使用top命令,具体用法是 top -H加上这个选项,top的每一行就不是显示一个进程,而是一个线程。
2。 使用ps命令,具体用法是 ps -xH
这样可以查看所有存在的线程,也可以使用grep作进一步的过滤。
3。 使用ps命令,具体用法是 ps -mq PID
这样可以看到指定的进程产生的线程数目。
更进一步,其实一些系统监控工具,在本质上也是读取的系统产生的文件罢了。比如说进程这个事情,
看看这个目录吧,/proc/5000/ 这里面有你所有想要的。其实stat代表着当前的一些信息。
使用ps命令来查看进程的时候,进程状态分别对应的含义如下:
D 不可中断睡眠 (通常是在IO操作) 收到信号不唤醒和不可运行, 进程必须等待直到有中断发生
R 正在运行或可运行(在运行队列排队中)
S 可中断睡眠 (休眠中, 受阻, 在等待某个条件的形成或接受到信号)
T 已停止的 进程收到SIGSTOP, SIGSTP, SIGTIN, SIGTOU信号后停止运行
W 正在换页(2.6.内核之前有效)
X 死进程 (未开启)
Z 僵尸进程 进程已终止, 但进程描述符存在, 直到父进程调用wait4()系统调用后释放BSD风格的
< 高优先级(not nice to other users)
N 低优先级(nice to other users)
L 页面锁定在内存(实时和定制的IO)
s 一个信息头
l 多线程(使用 CLONE_THREAD,像NPTL的pthreads的那样)
+ 在前台进程组