当前位置:首页 » 操作系统 » 推荐算法引擎

推荐算法引擎

发布时间: 2022-07-18 07:45:22

❶ 如何做好“推荐算法”有哪些常见的错误需要避免

在这里share一下。
1、推荐算法的构成
一套标准的推荐算法,需要四个组成部分
第一:数据源,行为基础数据的筛选;通常,推荐算法来源于用户行为的采集,简单说就是行为数据越丰富,样本覆盖率越全面,结果越准确;如果采样有偏差,那么结果就会有偏差。
举例1:游戏推荐算法,我们之前限于采样技术水平和处理能力,用的是登陆用户玩过的游戏历史,那么推荐结果就会偏重于需要登陆的游戏。而随着技术提升用全部用户玩过的游戏历史,就更全面了。
举例2:在搜索引擎中,对关键词做推荐,有两种方案,一种是基于广告主的竞价记录;另一种是基于网民的搜索行为;前一种专业性更强,噪音小;后一种覆盖面广,噪音大,各有利弊,根据业务诉求选择。
推荐算法,通常来源于用户的行为记录,比如关键词推荐用用户搜索历史,电商推荐用用户购物历史,游戏推荐用玩家玩游戏的历史,然后基于算法给出相关度,再排序展示 ;但这不绝对,也有并非基于用户行为记录的推荐原理,比如基于用户身份特征或其他地区、网络环境等特征,限于篇幅和常见的业务诉求,这里就不展开说明了。
行为基础数据必要时要做一些去除噪音的工作,比如你通过日志分析玩家游戏历史,或用户购物历史,至少知道把各搜索引擎和工具的抓取痕迹过滤出去,否则结果是很难看的。
算法很多种,网上可以搜到很多,就算搜不到,或者搜到了看不懂,自己编也不难的(我就编过,效果自以为还不错,但是的确不如人家专业的算法效果好,所以适合练手,不适合出去吹牛)
不同算法差异还是蛮大的,需要理解一下业务诉求和目标特征来选择。这个我真心不是高手,我们同事讲的算法我都没能理解,就不多说了。微博上的“张栋_机器学习"和"梁斌penny"都是算法高手,大家可以多关心他们的微博。
第三:参数!
绝对不要认为用到了好的算法就可以了!算法往往会基于一些参数来调优,这些参数哪里来?很不好意思的告诉你,大部分是拍脑袋出来的。但是你拍脑袋出来后,要知道去分析结果,去看哪里对,哪里错,哪里可以改,好的算法可以自动调优,机器学习,不断自动调整参数达到最优,但是通常可能需要你不断手工去看,去看badcase,想想是什么参数因素导致的,改一下是否变好?是否引入新的bad case?
第四:校验!
校验一种是人工做盲测,A算法,B算法的结果混淆,选案例集,看哪个效果好;或A参数、B参数混淆,同理测试。通过盲测选择认为更合理的算法、更适宜的参数.
以上是个人认为,做好推荐算法的步骤
下面说一下常见问题
1、以为有了算法就ok了,不对参数优化,不做后续的校验和数据跟踪,效果不好就说算法有问题,这种基本属于工作态度的问题了。
2、对样本数据的筛选有问题,或缺乏必要的噪音筛查,导致结果噪音多。比如你有个推广位天天摆着,导致用户点击多,然后导致后台行为数据里它和谁的关联都高,然后不管用户到哪里都推荐这个玩意,这就是没有足够筛查。
3、热度影响
我说一下最简单的推荐算法
同时选择了A和B的人数作为A与B的关联度。
这个实现最简单,也最容易理解,但是很容易受热度影响
我曾经注意过某个热门图书电商网站,推荐的关联书籍一水的热门书籍,就是这个问题。
这些是非常简单但是又非常容易出现的,关联误区。
4、过于求全
现在也遇到一些朋友,一提到推荐算法或者推荐系统,就说我这个要考虑,那个要考虑,不管是行为记录,还是用户特征,以至于各种节日效应,等等等等,想通过一个推荐系统完全搞定,目标很大,所以动作就极慢,构思洋洋洒洒做了很多,实现起来无从下手,或者难以寸进;我觉得,还是量力而行,从最容易下手的地方开始,先做到比没有强,然后根据不断地数据校验跟踪,逐渐加入其他考虑因素,步步前进,而不要一上来就定一个宏伟的庞大的目标;此外要考虑实现成本和开发周期,对于大部分技术实力没有网络,腾讯,淘宝那么强的公司而言,先把简单的东西搞好,已经足够有效了,然后在运营数据的基础上逐次推进,会越来越好;有些公司是被自己宏大的目标搞的焦头烂额,最后说,哎,没牛人搞不定啊。嗯,反正他们的目标,我显着是搞不定的。就这些,希望有所帮助

❷ 推荐算法有哪些

这种形式一般可以按推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。 “买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering “和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering “相关商品推荐”:基于内容推荐content-based “猜你喜欢” 一般混合使用推荐算法。

❸ 奈飞公司的创新的大数据推荐算法

第一个Netflix大奖成功的解决了一个巨大的挑战,为提供了50个以上评级的观众准确的预测他们的口味。下一个百万大奖目标是,为那些不经常做影片评级或者根本不做评级的顾客推荐影片,要求使用一些隐藏着观众口味的地理数据和行为数据来进行预测。同样,获胜者需要公开他们的算法。如果能解决这个问题,Netflix就能够很快开始向新客户推荐影片,而不需要等待客户提供大量的评级数据后才能做出推荐。
新的比赛用数据集有1亿条数据,包括评级数据,顾客年龄,性别,居住地区邮编,和以前观看过的影片。所有的数据都是匿名的,没有办法关联到netflix的任何一个顾客。
与第一个大奖赛不同,这次比赛没有设定比赛目标。50万美金首先奖励给6个月内取得领先的团队,另外50万美金奖励给18个月后取得领先的团队。
推荐引擎是Netflix公司的一个关键服务,1千多万顾客都能在一个个性化网页上对影片做出1-5的评级。Netflix将这些评级放在一个巨大的数据集里,该数据集容量超过了30亿条。Netflix使用推荐算法和软件来标识具有相似品味的观众对影片可能做出的评级。两年来,Netflix 已经使用参赛选手的方法提高了影片推荐的效率,这已经得到了很多影片评论家和用户的好评。
Strands推荐引擎的首席科学家里克·汉加特纳博士写道:“在短期内,搜索引擎将会越来越多地加入简单的推荐技术,以处理接近的查询词(例如,“您要找的是这个,根据类似查询/其他人的搜索,你可能要寻找的是这个。”)但从长期来说,而比起搜索行业和搜索技术,推荐技术会更加地无孔不入。”

❹ 搜索引擎的算法是如何推荐的

搜索引擎排名规则影响因素有:

1、网站权重

2、文章与用户搜索关键词的匹配度及关键词的密度

3、服务器,网站是否稳定正常打开

网络资源平台算法

影响网络收录及关键词排名的因素有很多,具体问题具体分析。

❺ 在购物网站软件开发中怎么使用推荐算法

这种形式一般可以按推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。
“买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering
“和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering
“相关商品推荐”:基于内容推荐content-based
“猜你喜欢” 一般混合使用推荐算法。

❻ 奈飞公司的推荐引擎分析大奖

援引路透社纽约9月21日消息: 来自186个国家的四万多个团队经过近三年的较量,世界最大的在线影片租赁服务商Netflix 今天宣布,一个由工程师,统计学家,研究专家组成的团队夺得了Netflix大奖,该团队成功的将Netflix的影片推荐引擎的推荐效率提高了10%。Netflix大奖的参赛者们不断改进了影片推荐效率,Netflix的客户已经为此获益。
随着一百万美金大奖的颁发,Netflix很快宣布了第二个百万美金大奖,希望世界上的计算机专家和机器学习专家们能够继续改进推荐引擎的效率。
获奖团队BPC(BellKor's Pragmatic Chaos),由原本是竞争对手的三个的团队重新组团而成,今天获得了由Netflix的创始人兼首席执行官哈庭斯颁发的一百万奖金。团队的七个成员分别是来自奥地利、加拿大、以色列和美国的电脑专家、统计专家和人工智能专家。七个成员今天都参加了颁奖仪式,这也是这七个成员第一次碰面。这一百万奖金如何分配将由团队自行决定。
首席执行官哈庭斯说:“我们经历了一次非常激烈的比赛,参赛团队开始时候独立作战,后来协同作战,终于将影片推荐效率提高到了10%以上。在接近比赛截止日期时,还有新的参赛作品不断快速的提交上来,让整个比赛过程变得非常的曲折和惊心动魄。“
Netflix说,BPC团队最终险胜另一个团队the Ensemble,该团队也是由多个前参赛团队组成的新的团队。 最终,这两个团队的影片推荐效率非常接近。由来自Netflix的专家和大学教授组成的评委会用了几周的时间来评选出最终优胜者。加州大学圣地亚哥分校的艾尔坎教授和加州大学尔湾分校的史密斯教授参加了比赛评委会。
比赛规则要求获胜团队公开他们采用的推荐算法,这样很多商业都能从中获益。获胜的参赛作品和参赛选手评级方法将被公布在加州大学尔湾分校的机器学习杂志上。

❼ 大数据运算的三种引擎是什么有什么区别

现在流行的开源引擎可不止三个,先罗列5个给你:
1)Hive,披着SQL外衣的Map-Rece。Hive是为方便用户使用Map-Rece而在外面封装了一层SQL,由于Hive采用了SQL,它的问题域比Map-Rece更窄,因为很多问题,SQL表达不出来,比如一些数据挖掘算法,推荐算法、图像识别算法等,这些仍只能通过编写Map-Rece完成。
2) Impala:Google Dremel的开源实现(Apache Drill类似),因为交互式实时计算需求,Cloudera推出了Impala系统,该系统适用于交互式实时处理场景,要求最后产生的数据量一定要少。
3)Shark/Spark:为了提高Map-Rece的计算效率,Berkeley的AMPLab实验室开发了Spark,Spark可看做基于内存的Map-Rece实现,此外,伯克利还在Spark基础上封装了一层SQL,产生了一个新的类似Hive的系统Shark。
4) Stinger Initiative(Tez optimized Hive):Hortonworks开源了一个DAG计算框架Tez,Tez可以理解为Google Pregel的开源实现,该框架可以像Map-Rece一样,可以用来设计DAG应用程序,但需要注意的是,Tez只能运行在YARN上。Tez的一个重要应用是优化Hive和PIG这种典型的DAG应用场景,它通过减少数据读写IO,优化DAG流程使得Hive速度提供了很多倍。
5)Presto:FaceBook于2013年11月份开源了Presto,一个分布式SQL查询引擎,它被设计为用来专门进行高速、实时的数据分析。它支持标准的ANSI SQL,包括复杂查询、聚合(aggregation)、连接(join)和窗口函数(window functions)。Presto设计了一个简单的数据存储的抽象层,来满足在不同数据存储系统(包括HBase、HDFS、Scribe等)之上都可以使用SQL进行查询。

❽ 推荐引擎的简介

推荐引擎 ,是主动发现用户当前或潜在需求,并主动推送信息给用户的信息网络。
具体来说,推荐引擎综合利用用户的行为、属性,对象的属性、内容、分类,以及用户之间的社交关系等等,挖掘用户的喜好和需求,主动向用户推荐其感兴趣或者需要的对象。 推荐引擎不是被动查找,而是主动推送;不是独立媒体,而是媒体网络;不是检索机制,而是主动学习。
推荐引擎利用基于内容、基于用户行为、基于社交关系网络等多种方法,为用户推荐其喜欢的商品或内容。
基于内容的推荐是分析用户正在浏览的内容的基因,选择与当前内容有相似基因的对象推荐给用户。同时也分析用户过去浏览过的内容的基因,从而获取其偏好,然后将与用户偏好的对象推荐给用户。例如,用户在浏览一款包的时候,为其推荐其他外形相似的包。
基于用户行为的推荐则是利用群体智慧算法,分析用户的群体行为,综合分析用户与用户之间的相似度、用户对小众商品的个性化需求,从而同时提高推荐的精准性、多样性与新颖性。
基于社交关系网络的推荐是通过分析用户所在的社交关系网络,找到其最能够影响到的用户,或者最能够影响到该用户的用户,再综合每位用户的个性化偏好进行推荐。 推荐引擎广告,是通过洞察用户消费意图,匹配最优广告,在大量媒体上实时呈现,来提高广告效率的互联网新技术。

❾ 论淘宝搜索推荐算法排序机制及2021年搜索的方向。

[写在前面]淘宝搜索引擎至今反复多次,搜索顺序也从最初的统计模型升级到机械学习模型,到2010年为止没有标签没有基础标签,随着计算能力的提高,2010年后开始挖掘用户的基础标签,从3年到2013年开始使用大规模的机械学习和实时特征
但你有没有想过为什么2016-2017年的两年是各种各样的黑搜索盛行的一年,为什么今天几乎消失了?
最根本的原因是从统计算法模型到机械学习模型的转型期。
说白了,这时不收割就没有收割的机会。因为统计模型即将退出历史舞台。
因此,各路大神各自扩大了统计模型算法中的影响因素。统计算法无论在哪里,点击率和坑产都很容易搜索。
那两年成了中小卖家的狂欢盛宴,很多大神的烟火也是旺盛的。
今天推荐算法的第三代使用后,加上疫情的影响进行了鲜明的比较,真的很感慨。
淘宝真的没有流量了吗?电器商务真的做不到吗?还是大家的思维没有改变,停留在2016-2017年的黑搜宴会上不想醒来?
2017年、2018年、2019年是淘宝推荐算法反复最快的3年,每年的算法升级都不同,整体上到2019年9月为止统计算法模型的影响因素还很大,从2019年下半年开始第三代推荐算法后,全面的真正意义进入了以机械学习模型为中心的推荐算法时代。
各路大神也无法验证,加上百年疫情的影响,很多大神的隐蔽布也泄露了。
基本上以统计模型为主,训练基本上没有声音,典型的是坑产游戏。
如果现在还能看到的话,基本上可以判断他不是在训练,而是在制作印刷用纸,一定会推荐使用资源,资源是多么安全。
刷子的生产增加真的没有效果吗?不是我以前的文章说:不是不行,而是从坑产的角度思考,而是从改变竞争环境的角度思考,用补充书改变竞争环境,改变场地,有新的天地,任何手段都要为商业本质服务。
正文
概述统计算法模型时代。
统计模型时代搜索引擎的排名是最原始的排名思考,如果你的类别不错,关键词比较正确,就能得到很大的流量,当时产品需求少,只要上下架的优化就能使产品上升。
到2016年为止没有坑产游戏吗?黑色搜索的效果不好吗?其实,什么时候坑产是最核心的机密,谁来教大家,什么时候教的最多的是类别优化,关键词优化,大部分优化都围绕关键词,电器商的老人想起了你什么时候得到关键词的人得到了世界。
有人告诉我做坑产,关键词找到生意也来了。什么时候知道坑产也没有人给你刷子,大规模的补充书也出现在黑色搜索盛行的时期。
为什么关键词者得天下?
搜索关键词是用户目前意图最直观的表达,也是用户表达意图最直接的方式。
搜索的用户购物意图最强,成交意愿也最强,现在搜索也是转化率最高的流量来源。
统计时代关键词背后直接依赖的是类别商品,只要制作类别和关键词分词即可,哪个时代最出现的黑马通常是类别机会、关键词机会、黑科学技术机会。
最基本的是商业本质,什么时候产品需求少,没有很多现在的类别,自己找类别,现在想想什么概念。
记得什么时候类别错了,搜索也可以来。如果你的商品点击反馈好的话,错误的类别没有什么影响,现在试试吧
搜索类是搜索的基础。
什么时候能称霸,背后有商业逻辑,用户行为数据好就行了。
但无论如何发展检索都离不开关键词。例如,上述关键词是用户表达意图的最直接的方法,是当前消费者的检索行为和购买行为发生了根本性的变化。
检索依然根据消费者的行为数据和关键词来判断需求,这就是机械学习模型时代。
机器学习模式时代-推荐搜索算法。
现在的商品体积和消费者购物行为的丰富性,统计算法不能满足检索的本质要求。
所以现在搜索引擎开始发展深度学习模式更精细的建模-推荐搜索算法,搜索排名更智能。
在此重点讨论推荐检索算法,
2017、2018、2019是推荐检索算法真正意义发展的3年,3年3个系统版本每年更换一次,很多电器商人都不知道头脑。
推荐检索算法和统计算法模型的最大区别在于,Query的处理能力和算法有召回机制
简单表示推荐算法的程序:
1:对检索关键词进行分词、重写的处理进行类别预判
2:根据用户信息,即用户以前的行为数据记录和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作等信息存档
3:根据检索用户信息,根据检索用户以前的行为数据检索引擎和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作为等信息存档3:根据检索用户信息的检索用户信息
也就是说,在第一关召回阶段基本上与统计模型时代的最佳化途径相同,核心是标题分词和类别,现在最大的区别是根据用户信息推荐最佳化,这是标签和正确人群标签图像最佳化的基本意义。
为什么现在一直在谈论标签,谈论人标签图像?入池实际上是为了匹配真正的消费者用户信息,通过直通车测试来判断人群也是为了通过性别、年龄和购买力来优化匹配真正的消费者。
召回机制:
通过构建子单元索引方式加快商品检索,不必经历平台上亿级的所有商品。该索引是搜索引擎中的倒置索引,利用倒置索引初始筛选商品的过程是召回阶段。
在这个阶段,不会进行复杂的计算,主要是根据现在的搜索条件进行商品候选集的快速圈定。
之后再进行粗排和精排,计算的复杂程度越来越高,计算的商品集合逐渐减少,最后完成整个排序过程。
主要召回路径分为
1:语言召回
2:向量召回
这些都是商业秘密不方便的说明,有兴趣的是学习我们的在线会员课程标签重叠游戏6是基于语言和向量召回的基础逻辑实战落地的课程。
下一阶段进入粗行列,粗行列受这些因素的影响:
粗行列作为召回后的第一个门槛,希望用户体验以时间低的模型快速排序和筛选商品,第一关系将过滤到不适合本次检索词要求的商品
为了实现这个目的,首先要明确影响粗排名得分的因素
1:类别匹配得分和文本匹配得分,
2:商品信息质量(商品发布时间、商品等级、商品等级)
3:商品组合得分
点击得分
交易得分卖方服务商业得分
在粗排列框架下,系统粗排列算法根据商品类别的预测得分进行得分
点击得分交易得分
交易得分卖方服务商业得分粗排列框架下,系统粗排列的大排列
最后是精排,检索顺序的主要目标是高相关性、高个性化的正确性。
每个用户的喜好不同,系统会根据每个用户的Query结合用户信息进行召回。然后通过粗排后,商品数量从万级下降到千级。
千级商品经排后直接向用户展示,搜索过程中商品集合的思考和具体变化如下图

前面的召回、粗排主要解决主题相关性,通过主题相关性的限制,首先缩小商品集合和我们的在线会员课程标签
精排阶段系是真正系统推荐算法发挥真正威力时,应根据用户行为反馈迅速进行机械学习建模,判断用户真实性、准确性和可持续控制性。
为什么现在的游戏和黑色技术暂时出现,核心是系统算法模型机械学习模型,系统分析用户有问题,不正确,不稳定,维持性差,可以迅速调整。
也就是说,即使发现脆弱性,研究快速有效的方法,系统也会根据你精排阶段的用户行为迅速分析学习建模,发现模型有问题,你的玩法就结束了。
猜机器学习建模的速度有多快?
想玩黑色的东西早点死去吧。
现在使用的检索顺序模型主要是
CTR模型和CVR模型,具体模型过于复杂也不需要深入,但影响这两种模型的最基本因素是用户行为数据
真的不能假的,假的也不能假的算法模型越来越智能化,算法越来越强,只有回归商业本质才能真正解决算法模型背后真正想解决的问题,算法基于商业逻辑。
2021年搜索向哪个方向发生变化:
2020年电器商人和蚂蚁是不平凡的一年。2020年也是蚂蚁从神坛上拉下来的元年,现在蚂蚁有各种各样的黑色。
基于中小卖家的走势无疑是阿里必须正面面对的现实。
如何让中小卖家回流或留在平台上,搜索该怎么做?
检索一定是基于三方的考虑,买方、卖方和平台本身,现在市场上又开始提倡坑产搜索逻辑,坑产妖风又开始,根据推荐搜索算法逻辑来谈这个问题。
为什么坑产思维是不死的小强,每次危机都会跳出来。
以统计模型为中心的坑产时代是淘宝从2003年到2015年一直使用的搜索算法模型长达13年。
同时也是淘宝和中国网分红的野蛮生长期,统计算法模式让太多电商赚钱。除了
之外,十年的奴役思维已经习惯了,在电器商圈,坑产游戏一定有人相信,其他人不一定被认可。所以,我们夹着尾巴发展的原因,时间真的可以证明一切,不用多说,做自己。
习惯性思维加上特殊时期的赚钱蝴蝶效应,使许多电器商人活在历史的长梦中。正确地说,统计算法模型的真正废除是在2019年下半年。
同学说坑产永远有效,我也这么想。
永远有效的是起爆模型坑产权重驱动和统计算法模型中的坑产排名不同。
起爆模型的坑产要素永远有效,这永远不会改变。
但是,如何有效地加上这个起爆模型的坑产权重,并不像模仿购物的意图那么简单。
坑产游戏在2021年绝对不行。淘宝不会把现在的算法系统换成15年前的。
基于三方利益:
购买者体验
卖方利益
平台的发展
搜索肯定会向高精度和高控制性发展。以标签为中心的用户标签图像仍然是影响流量精度的基本因素。
必须从标签的角度考虑和优化种子组的图像。
通过种子组的图像向相似人扩展到叶类人,业界喜好人最后向相关人扩展也是扩大流量的过程渠道。
基于推荐搜索算法逻辑:
精密排列阶段算法更强,精度更高,转化率更高,持续稳定性更强。
基于中小卖方流通的现状,优化精排阶段并非中小卖方能够简单接触。
推荐算法从搜索排名阶段出现在哪个阶段?
个人判断
一是召回阶段
二是粗排阶段
上述提到召回阶段的算法简单复盖商品为万级,排序规则也比较简单,中小卖方在召回阶段提高精度尤为重要。
在这个万级商品库中,如上下架的权重上升,中小卖方有机会上升到主页,从子单元的索引召回中寻找机会。
或者根据中小卖方的新产品和中小卖方的店铺水平进行特别优先搜索推荐,使中小卖方的新产品在低销售状态下显示,可以实现锦囊算法。
中小卖方有机会搜索主页,不调用用户信息直接打开主页的展示权可能是中小卖方最大的支持。
根据召回阶段的用户行为数据,在粗排阶段以比例融入用户信息,即标签的影响。
在初始召回阶段,类别和分词权重,看业者主图场景反应背后的人们反馈,用系统引导,给中小卖方真正参考的流量方向和成交方向。
谁疯狂地印刷用纸直接关闭黑屋,理解印刷用纸优化竞争场景,从优化人群的角度出发,适当放宽处罚。
通过召回阶段,得到的用户信息会影响粗体结果。在这个阶段,用户信息的权重比例不应该太大,流量卡也不应该太死。
在各检索顺序阶段用户信息,即用户标签对检索的影响权重的问题。
这个方向我的个人观点是可能的。

❿ 购物网站的商品推荐算法有哪些

这种形式一般可以按推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。 “买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering “和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering “相关商品推荐”:基于内容推荐content-based “猜你喜欢” 一般混合使用推荐算法。

热点内容
凸包的graham算法 发布:2025-01-21 12:00:00 浏览:146
jsonobject转java对象 发布:2025-01-21 12:00:00 浏览:306
macpython3默认 发布:2025-01-21 11:58:26 浏览:261
芒果服务器是什么意思 发布:2025-01-21 11:57:54 浏览:40
微信聊天服务器错误什么意思 发布:2025-01-21 11:56:13 浏览:460
linuxtomcat不能访问 发布:2025-01-21 11:47:11 浏览:394
刷新器需要什么配置 发布:2025-01-21 11:09:28 浏览:972
jedis源码 发布:2025-01-21 11:08:24 浏览:890
edm数据库 发布:2025-01-21 11:05:54 浏览:371
QQ咋样加密 发布:2025-01-21 11:05:45 浏览:164