指数函数算法
1. 自然对数的运算法则和公式
①loga(mn)=logam+logan;
②loga(m/n)=logam-logan;
③对logam中m的n次方有=nlogam;
如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数
的底。定义:
若a^n=b(a>0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(mn)=log(a)(m)+log(a)(n);
3、log(a)(m÷n)=log(a)(m)-log(a)(n);
4、log(a)(m^n)=nlog(a)(m)
5、log(a^n)m=1/nlog(a)(m)
推导:
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、mn=m×n
由基本性质1(换掉m和n)
a^[log(a)(mn)]
=
a^[log(a)(m)]×a^[log(a)(n)]
由指数的性质
a^[log(a)(mn)]
=
a^{[log(a)(m)]
+
[log(a)(n)]}
又因为指数函数是单调函数,所以
log(a)(mn)
=
log(a)(m)
+
log(a)(n)
3、与(2)类似处理
mn=m÷n
由基本性质1(换掉m和n)
a^[log(a)(m÷n)]
=
a^[log(a)(m)]÷a^[log(a)(n)]
由指数的性质
a^[log(a)(m÷n)]
=
a^{[log(a)(m)]
-
[log(a)(n)]}
又因为指数函数是单调函数,所以
log(a)(m÷n)
=
log(a)(m)
-
log(a)(n)
4、与(2)类似处理
m^n=m^n
由基本性质1(换掉m)
a^[log(a)(m^n)]
=
{a^[log(a)(m)]}^n
由指数的性质
a^[log(a)(m^n)]
=
a^{[log(a)(m)]*n}
又因为指数函数是单调函数,所以
log(a)(m^n)=nlog(a)(m)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m)
=
[m×ln(b)]÷[n×ln(a)]
=
(m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]
2. 计算下列指数函数,有没有什么简单算法如果有求个过程。
学过导数吗?
3. 复变指数函数的计算方法问题
复幂函数(指数为实整数)
在这里插入图片描述
直接运用复数的加减乘除即可~
例子:(使用方法就是简单计算——运算同实数)
先将复数化为指数形式,再进行指数运算~
在这里插入图片描述
复指数函数
在这里插入图片描述
可利用e的指数乘法展开,进而使用欧拉公式展开计算~(具体方法具体讨论,仅常用基本思路)
在这里插入图片描述
例子:(多使用展开方法来计算~)
在这里插入图片描述
补充:指数函数具有周期性——体现在欧拉展开的三角函数中
在这里插入图片描述
复三角函数
在这里插入图片描述
正弦计算的展开式:
在这里插入图片描述
余弦计算的展开式:
在这里插入图片描述
例子:
(需要将正弦函数适当的展开,在使用公式转换为e指数求解)
在这里插入图片描述
反三角函数
在这里插入图片描述
直接上公式:
List item
在这里插入图片描述
以上两个形式中可以看出有Ln成分——具有多值性
(不熟悉复对数函数·可点击前往)
例子:
(先取反三角的三角值,再使用复三角函数公式——接着进行替换、配方来简化——最后进行反(对数)函数处理~)
在这里插入图片描述
复反双曲函数
在这里插入图片描述
双曲函数与三角函数的关系:
在这里插入图片描述
正双曲函数展开式:
在这里插入图片描述
反双曲函数展开式:
在这里插入图片描述
例子:
(利用复三角与复双曲的关系,进而转化到三角形式,利用求解三角的方法解答——可能有时需要展开化简~)
在这里插入图片描述
复根式函数
在这里插入图片描述
应该考虑复数开根号的多值性——周期性:
在这里插入图片描述
例子:
(转化指数形式,将复数转换成——模*e指数的形式)
在这里插入图片描述
复对数函数
在这里插入图片描述
计算方式:(补充,由于Arg为辐角,所以存在2kΠ,即多值情况)
在这里插入图片描述
复对数函数的运算规则:
List item
在这里插入图片描述
在这里插入图片描述
运算误区:
不能将Ln(Z^z)中的指数z直接提到Ln的前边
例子:
(不能直接如同实数那样提取指数等操作,而是要先将复数部分转换成指数形式——再利用复对数的加减乘除规则来运算——实数Ln等价于实数ln )
在这里插入图片描述
一般复幂函数(指数为复数)
在这里插入图片描述
计算时需要进行自然指数变换:
在这里插入图片描述
这时候需要考虑Lnz的多值性——不
4. 对数和指数的转换公式是什么
公式如下:
对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y,因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。
对数的应用:
对数在数学内外有许多应用,这些事件中的一些与尺度不变性的概念有关,例如,鹦鹉螺的壳的每个室是下一个的大致副本,由常数因子缩放,这引起了对数螺旋,Benford关于领先数字分配的定律也可以通过尺度不变性来解释,对数也与自相似性相关。
对数算法出现在算法分析中,通过将算法分解为两个类似的较小问题并修补其解决方案来解决问题,自相似几何形状的尺寸,即其部分类似于整体图像的形状也基于对数,对数刻度对于量化与其绝对差异相反的值的相对变化是有用的。
5. 数学中指数的指什么意思
指数是幂运算aⁿ(a≠0)中的一个参数,a为底数,n为指数,指数位于底数的右上角,幂运算表示指数个底数相乘。当n是一个正整数,aⁿ表示n个a连乘。当n=0时,aⁿ=1。
例如:2³,其中3就是指数,2为底数。
(5)指数函数算法扩展阅读:
指数的性质
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0一般也不考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,则指数函数单调递增;a小于1大于0,则单调递减。
(5) 函数总是在某一个方向上无限趋向于X轴,永不相交。
(6) 函数总是通过定点(0,1)。
(7)指数函数无界。
(8) 指数函数既不是奇函数也不是偶函数。
6. 指数函数的值域
一.观察法
通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,
故3+√(2-3x)≥3。
∴函数的知域为 .
点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
二.反函数法
当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。
三.配方法
当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域
例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]
点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。
四.判别式法
若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。
点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。
解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)
当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3
当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。
点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。
五.最值法
对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。
点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。
解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。
当x=-1时,z=-5;当x=3/2时,z=15/4。
∴函数z的值域为{z∣-5≤z≤15/4}。
点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。
六.图象法
通过观察函数的图象,运用数形结合的方法得到函数的值域。
例6求函数y=∣x+1∣+√(x-2)2 的值域。
点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。
解:原函数化为 -2x+1 (x≤1)
y= 3 (-1<x≤2)
2x-1(x>2)
它的图象如图所示。
显然函数值y≥3,所以,函数值域[3,+∞]。
点评:分段函数应注意函数的端点。利用函数的图象
求函数的值域,体现数形结合的思想。是解决问题的重要方法。
求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。
七.单调法
利用函数在给定的区间上的单调递增或单调递减求值域。
例1求函数y=4x-√1-3x(x≤1/3)的值域。
点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。
解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x
在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。
八.换元法
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。
例2求函数y=x-3+√2x+1 的值域。
点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。
解:设t=√2x+1 (t≥0),则
x=1/2(t2-1)。
于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.
所以,原函数的值域为{y|y≥-7/2}。
点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。
练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}
九.构造法
根据函数的结构特征,赋予几何图形,数形结合。
例3求函数y=√x2+4x+5+√x2-4x+8 的值域。
点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。
解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22
作一个长为4、宽为3的矩形ABCD,再切割成12个单位
正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 ,
KC=√(x+2)2+1 。
由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共
线时取等号。
∴原函数的知域为{y|y≥5}。
点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
十.比例法
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。
例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。
点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。
解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
当k=-3/5时,x=3/5,y=-4/5时,zmin=1。
函数的值域为{z|z≥1}.
点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。
十一.利用多项式的除法
例5求函数y=(3x+2)/(x+1)的值域。
点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。
解:y=(3x+2)/(x+1)=3-1/(x+1)。
∵1/(x+1)≠0,故y≠3。
∴函数y的值域为y≠3的一切实数。
点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。
十二.不等式法
例6求函数Y=3x/(3x+1)的值域。
点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。
解:易求得原函数的反函数为y=log3[x/(1-x)],
由对数函数的定义知 x/(1-x)>0
1-x≠0
解得,0<x<1。
∴函数的值域(0,1)。
点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。
7. 指数函数的遗传算法的问题
指数函数的遗传算法可以这样来考虑。
1、用最小估计原则建立自定义函数y=func(x),即min(x-xi)²
2、用ga遗传算法函数求得拟合系数
fitnessfcn=@func;
nvars=2;
k=ga(fitnessfcn,nvars) %拟合系数
3、y拟合值与y试验值比较,当两者比较接近,说明拟合是合理的。也可以用决定系数R²来判断。
4、求解结果
y=k0*(1-exp(-k1*t))
k 0= 10.020277259203;k 1=0.22885255916614
8. 求指数函数算法公式
9. 指数相同,底数怎么计算
底数不同,指数相同的整式乘法算法的代数意义:指数相同,底数相乘。
例如:a^n * b^n = (a*b)^n
幂运算(指数运算)是一种关于幂的数学运算。同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减。幂的幂,底数不变,指数相乘。下面a≠0。
(9)指数函数算法扩展阅读:
在某种情况下(基数>0,且不为1),指数运算中的指数可以通过对数运算求解得到。
幂(n^m)中的n,或者对数(x=logaN)中的a(a>0且a不等于1)。
在指数函数的定义表达式中,在a^x前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在 x等于0的时候,y等于1。当0<a<1时,指数函数对于x的负数值迅速攀升,对于x的正数值非常平坦,在x等于0的时候,y等于1。
10. 底数不同指数相同的乘法怎么做
底数不同,指数相同的整式乘法算法:a^n×b^n=(a×b)^n
这种运算称为幂运算。
例如:
1、2^3×3^3=(2×3)^3=216
2、2^2×3^2=(2×3)^2=36
3、2^4×3^4=(2×3)^4=1296
除此之外还有底数相同指数不同的乘法运算:n^a×n^b=n^(a+b)
例如:
1、2^3×2^4=2^(3+4)=128
(10)指数函数算法扩展阅读:
一般地,形如以指数为自变量,底数为大于0且不等于1的常量的函数称为指数函数,它是初等函数中的一种。
发展历程
指数与幂的概念的形成是相当曲折和缓慢的指数符号( Sign of power) 的种类繁多,且记法多样化。
我国古代“幂”字至少有十各不同的写法。
刘徽为《九章算术》作注,在《方田》章求矩形面积法则中写道:“此积谓田幂,凡广从相乘谓之幂( 长和宽相乘的积叫作幂) 。”这是第一次在数学文献上出现幂。
参考资料来源:网络-指数