当前位置:首页 » 操作系统 » 贪心算法的应用

贪心算法的应用

发布时间: 2022-07-17 19:21:59

Ⅰ 贪心算法的数学应用

如把3/7和13/23分别化为三个单位分数的和
【贪心算法】
设a、b为互质正整数,a<b 分数a/b 可用以下的步骤分解成若干个单位分数之和:
步骤一: 用b 除以a,得商数q1 及余数r1。(r1=b - a*q1)
步骤二:把a/b 记作:a/b=1/(q1+1)+(a-r1)/b(q1+1)
步骤三:重复步骤2,直到分解完毕
3/7=1/3+2/21=1/3+1/11+1/231
13/23=1/2+3/46=1/2+1/16+1/368
以上其实是数学家斐波那契提出的一种求解埃及分数的贪心算法,准确的算法表述应该是这样的:
设某个真分数的分子为a,分母为b;
把b除以a的商部分加1后的值作为埃及分数的某一个分母c;
将a乘以c再减去b,作为新的a;
将b乘以c,得到新的b;
如果a大于1且能整除b,则最后一个分母为b/a;算法结束;
或者,如果a等于1,则,最后一个分母为b;算法结束;
否则重复上面的步骤。
备注:事实上,后面判断a是否大于1和a是否等于1的两个判断可以合在一起,及判断b%a是否等于0,最后一个分母为b/a,显然是正确的。
PHP代码: classtanxin{public$weight;public$price;publicfunction__construct($weight=0,$price=0){$this->weight=$weight;$this->price=$price;}}//生成数据$n=10;for($i=1;$i<=$n;$i++){$weight=rand(1,20);$price=rand(1,10);$x[$i]=newtanxin($weight,$price);}//输出结果functiondisplay($x){$len=count($x);foreach($xas$val){echo$val->weight,'',$val->price;echo'<br>';}}//按照价格和重量比排序functiontsort(&$x){$len=count($x);for($i=1;$i<=$len;$i++){for($j=1;$j<=$len-$i;$j++){$temp=$x[$j];$res=$x[$j+1]->price/$x[$j+1]->weight;$temres=$temp->price/$temp->weight;if($res>$temres){$x[$j]=$x[$j+1];$x[$j+1]=$temp;}}}}//贪心算法functiontanxin($x,$totalweight=50){$len=count($x);$allprice=0;for($i=1;$i<=$len;$i++){if($x[$i]->weight>$totalweight)break;else{$allprice+=$x[$i]->price;$totalweight=$totalweight-$x[$i]->weight;}}if($i<$len)$allprice+=$x[$i]->price*($totalweight/$x[$i]->weight);return$allprice;}tsort($x);//按非递增次序排序display($x);//显示echo'0-1背包最优解为:';echotanxin($x);java源代码 packagemain;importjava.util.ArrayList;importjava.util.Collections;importjava.util.Comparator;importjava.util.List;importjava.util.Random;publicclassMain{/***测试*/publicstaticvoidmain(String[]args){//1.随机构造一批任务List<Pair<Integer>>inputList=newArrayList<Pair<Integer>>();Randomrand=newRandom();for(intn=0;n<20;++n){Integerleft=rand.nextInt(100);Integerright=left+rand.nextInt(100)+1;Pair<Integer>pair=newPair<Integer>(left,right);inputList.add(pair);}//将任务列表按结束时间排序(也就是根据right字段进行排序)sortByRight(inputList);printPairList(inputList);//执行算法List<Pair<Integer>>outputList=algorithm(inputList);System.out.println();printPairList(outputList);}/***贪心算法**@paraminputList*@return使数量最多的任务方案*/publicstatic<TextendsComparable<T>>List<Pair<T>>algorithm(List<Pair<T>>inputList){if(null==inputList||inputList.size()==0||inputList.size()==1){returninputList;}sortByRight(inputList);List<Pair<T>>outputList=newArrayList<Pair<T>>();intlast=0;outputList.add(inputList.get(last));intintputSize=inputList.size();for(intm=1;m<intputSize;++m){Pair<T>nextPair=inputList.get(m);TnextLeft=nextPair.getLeft();Pair<T>lastOutPair=inputList.get(last);TlastRight=lastOutPair.getRight();intflag=nextLeft.compareTo(lastRight);if(flag>=0){outputList.add(nextPair);last=m;}}returnoutputList;}/***对传入的List<Pair<T>>对象进行排序,使Pair根据right从小到大排序。**@paraminputList*/privatestatic<TextendsComparable<T>>voidsortByRight(List<Pair<T>>inputList){CompareByRight<T>comparator=newCompareByRight<T>();Collections.sort(inputList,comparator);}/***打印一个List<Pair<T>>对象。**@paraminputList*/privatestatic<TextendsComparable<T>>voidprintPairList(List<Pair<T>>inputList){for(Pair<T>pair:inputList){System.out.println(pair.toString());}}}/***根据Pair.right比较两个Pair。用于Conlections.sort()方法。**@param<T>*/classCompareByRight<TextendsComparable<T>>implementsComparator<Pair<T>>{/*@Override*/publicintcompare(Pair<T>o1,Pair<T>o2){Tr1=o1.getRight();Tr2=o2.getRight();intflag=r1.compareTo(r2);returnflag;}}/***代表一个任务对象。有点装逼用模板来写了。left表示开始时间,right表示结束时间。**@param<T>*/classPair<TextendsComparable<T>>{privateTleft;privateTright;publicPair(Tleft,Tright){this.left=left;this.right=right;}@OverridepublicStringtoString(){return[left=+left.toString()+','+right=+right.toString()+']';}publicTgetLeft(){returnleft;}publicvoidsetLeft(Tleft){this.left=left;}publicTgetRight(){returnright;}publicvoidsetRight(Tright){this.right=right;}}

Ⅱ 求解一道贪心算法

因为这个问题涉及到高维求解(大于3维),所以不推荐你用贪心算法或遗传算法之类的算法。这里给出一种升级的蒙特卡罗算法——自适应序贯数论算法,这是一种以GLP集合为基础的随机遍历算法,可以很轻易的解决一系列的高维求解问题,目前根据网上能找到的资料最多可以做到18维。

下面就根据你给出的例子讲解一下:

对于6000的料来说

1185最多做到5根(要求4根,所以一根木料对于1185的产品来说最多有0到45种可能);1079最多做到5根;985最多做到6根;756最多做到7根。

所以第一次加工一根木料最多有5*6*7*8=1680种加工可能(当然其中包括那些产品总长度大于料长的可能,但是我们可以通过罚函数来避免这些情况),那么利用GLP算法我们可以一次性产生这1680种可能,然后逐个比较那种可能最省木料;

设第一加工出的产品量分别为1 1 3 1

那么1185加工量剩3,1079剩5,985剩7,756剩7,所以第二次加工的可能性有(3+1)*(5+1)*(6+1)*(7+1)=1120种

关于自适应序贯数论算法,根据这道题你可以这样理解,4种尺寸构成了一个4维的空间,四种尺寸的每一种组合相当于空间中的一个点(1185的1根,1079的1根,985的3根,756的1根,这就组成了这个4维空间中的(1,1,3,1)点) ,自适应序贯数论算法就是先根据GLP算法在这个4维空间中随机的,均匀的分布一定的点(也就是尺寸的组合),然后根据目标函数确定其中哪一个点是最优点,我们认为最优点的附近出现最优解的可能性最大,那么我们就以最优点为中心,以一定的尺度为半径将原空间缩小,然后我们在心空间中再一次利用GLP算法均匀,随机的充满这个空间,然后重复以上过程,直到这个空间小到我们事先规定的大小,这样我们就找到了最优解。

也许你会担心算法一上来就收敛到了局部最优解,然后一直在这里打转,不用担心,GLP最大的优点就是均匀的充斥整个空间,尽量将每一种可能都遍历到。

这种算法的缺点在于充斥空间用的点需要生成向量来生成,每一种充斥方式都需要不同的向量,你可以在《数论方法在统计中的应用》这本书中查到已有的每种充斥方式对应的那些生成向量。

下面是我跟据对你给出的例子的理解算出的结果。

1185:1根
1079:1根
985:3根
756:1根
剩余木料0

1185:1根
1079:1根
985:3根
756:1根
剩余木料0

1185:1根
1079:1根
985:3根
756:1根
剩余木料0

1185:1根
1079:0根
985:1根
756:5根
剩余木料15

1185:0根
1079:3根
985:0根
756:0根
剩余木料2748

用去木料:5根
请按任意键继续. . .

程序代码如下:(变量都是用汉语拼音标的)

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <iostream.h>
#include <iomanip.h>
#include <time.h>
#include <fstream.h>
#include <windows.h>
#include "glp.h"
#define jiedeweishu 4
#define glpgeshu 10007
#define glpgeshu1 5003//100063
#define glpgeshu2 6007//33139//71053//172155//100063
#define yuanmuchang 6000
#define qiegesushi 5
#define chicun1 1185
#define chicun2 1079
#define chicun3 985
#define chicun4 756
#define chicun1shuliang 4
#define chicun2shuliang 6
#define chicun3shuliang 10
#define chicun4shuliang 8

float xuqiuchicun[jiedeweishu]={chicun1,chicun2,chicun3,chicun4};
float chicunxuqiuliang[jiedeweishu]={chicun1shuliang,chicun2shuliang,chicun3shuliang,chicun4shuliang};
float zuobianjie0[jiedeweishu];//{-19,1,-11,1.5,0,200};//{0.39111,-18.5,1,-11,1,0,2};//左边界
float youbianjie0[jiedeweishu];//{-17,1.5,-7,2,0.05,900};//{0.393,-17,2,-9,2,0.1,6};//右边界
float zuobianjie[jiedeweishu];
float youbianjie[jiedeweishu];
float zuobianjie1[jiedeweishu];//过度用
float youbianjie1[jiedeweishu];
float zuobianjie2[jiedeweishu];//局部边界
float youbianjie2[jiedeweishu];
float zuobianjie3[jiedeweishu];//大边界
float youbianjie3[jiedeweishu];
float sheng_cheng_xiang_liang[jiedeweishu]={1,1206,3421,2842};//生成向量
float sheng_cheng_xiang_liang1[jiedeweishu]={1,792,1889,191};//{1,39040,62047,89839,6347,30892,64404};//生成向量
float sheng_cheng_xiang_liang2[jiedeweishu]={1,1351,5080,3086};//{1,18236,1831,19143,5522,22910};//{1,18010,3155,50203,6065,13328};//{1,167459,153499,130657,99554,61040,18165};

struct chushi
{
float geti[jiedeweishu];
float shiying;
};

chushi *zuiyougeti;//精英保存策略
chushi *zuiyougetijicunqi;

int sishewuru(float);
float cha;//左右边界的差
int biao;//判断寻优是否成功1表示成功0表示不成功
int maxgen;//最大计算代数
int gen;//目前代数
void initialize();//算法初始化
void jingyingbaoliu();//精英保存的实现
void mubiaohanshu1(chushi &bianliang);//适应度的计算使用残差法
int cmpshiyingjiang(const void *p1,const void *p2)
{
float i=((chushi *)p1)->shiying;
float j=((chushi *)p2)->shiying;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}

int cmp1(const void *p1,const void *p2)
{
float i= *(float*)p1;
float j= *(float*)p2;
return i<j ? 1:(i==j ? 0:-1);//现在是按降序牌排列,将1和-1互换后就是按升序排列
}
void main()
{
float bianjiebianhuashuzu[jiedeweishu];
float yiwanchengshuliang[jiedeweishu];
zuiyougeti=new chushi;//最优个体的生成
zuiyougetijicunqi=new chushi;

int i;

for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=0;
yiwanchengshuliang[i]=0;
}
int muliaoshuliang=0;
while(1)
{

if(yiwanchengshuliang[0]==chicun1shuliang&&yiwanchengshuliang[1]==chicun2shuliang&&yiwanchengshuliang[2]==chicun3shuliang&&yiwanchengshuliang[3]==chicun4shuliang)
break;//都加工完了就退出程序
biao=1;

for(i=0;i<jiedeweishu;i++)
{
bianjiebianhuashuzu[i]=chicunxuqiuliang[i]-yiwanchengshuliang[i];
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie0[i]=0;
if(bianjiebianhuashuzu[i]>(int)(yuanmuchang/xuqiuchicun[i]))
{
youbianjie0[i]=(int)(yuanmuchang/xuqiuchicun[i]);
}
else
{
youbianjie0[i]=bianjiebianhuashuzu[i];
}
}
for(i=0;i<jiedeweishu;i++)
{
zuobianjie[i]=zuobianjie0[i];
youbianjie[i]=youbianjie0[i];
}
for(i=0;i<jiedeweishu;i++)//在这套程序中边界分为两个部分,其中一组是根据最优解的收敛范围进行局部寻优,如果在局部找不到最优解则以现有最优解为中心进行全局搜索
{
zuobianjie2[i]=zuobianjie[i];
youbianjie2[i]=youbianjie[i];
zuobianjie3[i]=zuobianjie[i];
youbianjie3[i]=youbianjie[i];
}
zuiyougeti->shiying=-3000;
//cout<< zuiyougeti->shiying<<endl;
initialize();
//for(i=0;i<jiedeweishu;i++)/////
//{////
// cout<<zuiyougeti->geti[i]<<",";////
//}/////////
//cout<<endl;/////
// cout<<"初始最优解:"<<" "<<-zuiyougeti->shiying<<endl;/////////////
for(gen=1;gen<maxgen;gen++)
{
jingyingbaoliu();
if(cha<1e-1)
break;
}
//cout<<"最终在收敛的范围内左右边界的最大差值: "<<cha<<endl;
//for(i=0;i<jiedeweishu;i++)
//{
// cout<<setiosflags(ios::fixed)<<setprecision(6)<<zuiyougeti->geti[i]<<",";
// }
//cout<<endl;

//cout<<"共用代数"<<gen<<endl;
cout<<"1185:"<<zuiyougeti->geti[0]<<"根"<<endl;
cout<<"1079:"<<zuiyougeti->geti[1]<<"根"<<endl;
cout<<"985:"<<zuiyougeti->geti[2]<<"根"<<endl;
cout<<"756:"<<zuiyougeti->geti[3]<<"根"<<endl;
cout<<"剩余木料"<<(-zuiyougeti->shiying)<<endl;////////////////
cout<<endl;
for(i=0;i<jiedeweishu;i++)
{
yiwanchengshuliang[i]=yiwanchengshuliang[i]+zuiyougeti->geti[i];
}
muliaoshuliang++;

}
cout<<"用去木料:"<<muliaoshuliang<<"根"<<endl;
delete [] zuiyougetijicunqi;
delete [] zuiyougeti;

system("pause");
}
void initialize()
{
maxgen=20;//最大代数
gen=0;//起始代
cha=100;
chushi *chushizhongqunji;
chushizhongqunji=new chushi[glpgeshu];
int i,j;
for(i=0;i<jiedeweishu;i++)
{
zuobianjie1[i]=zuobianjie[i];
youbianjie1[i]=youbianjie[i];
}
float **glp_shu_zu;//第一次求解,为了使解更精确这一次求解需要的点最多
glp_shu_zu=new (float *[glpgeshu]);
for(i=0;i<glpgeshu;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpgeshu,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,sheng_cheng_xiang_liang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
for(i=0;i<glpgeshu;i++)//产生初始种群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
if(j==3&&glp_shu_zu[i][j]<0)
{
cout<<"274"<<endl;/////////////
cout<<zuobianjie[j]<<" "<<glp_shu_zu[i][j]<<" "<<youbianjie[j]<<endl;////////////////////
system("pause");///////////////////
}
}
}
for(i=0;i<glpgeshu;i++)//计算初始种群的适应度
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpgeshu,sizeof(chushi),&cmpshiyingjiang);//根据适应度将初始种群集按降序进行排列
chushi *youxiugetiku;//建立一个储存优秀个体的库
youxiugetiku=new chushi[glpgeshu];//建立一个储存优秀个体的库
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougeti->shiying)//凡是比上一代的最优个体还要好的个体都放入优秀个体库
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
//cout<<youxiugetiku[i].geti[j]<<endl;
}
//system("pause");
i++;
}
// cout<<i<<endl;//////////////
//system("pause");//////////////////////////////////////
jishuqi=i;//将得到的优秀个体的数量放入jishuqi保存
float *bianjiezancunqi;//下面就要以优秀个体库中个体的范围在成立一个局部搜索区域,所以先建立一个边界暂存器
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];//将优秀个体库每一维的数据都放入bianjiezancunqi
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);//对这些数据按降序排列,取两个边界又得到一个局部范围
//将得到的范围进行保存
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
//cout<<zuobianjie[i]<<endl;//////////////////////////
// cout<<youbianjie[i]<<endl;///////////////////////////
//cout<<endl;///////////////////
//
if(zuobianjie[i]<zuobianjie2[i])//如果新得到的局部左边界在上一代局部左边界左边,则左边界取上一代的
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])//如果新得到的局部右边界在上一代局部右边界右边,则右边界取上一代的
{
youbianjie[i]=youbianjie2[i];
}
}
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)//本代种群的最优个体比历史最有个个体好,则用本代的代替之,并将标志位赋值为1表示寻优成功
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
for(i=0;i<glpgeshu;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;
}
void jingyingbaoliu() //精英保留的实现
{
float glpshuliang,xiangliang[jiedeweishu];
if(biao==1)//如果寻优成功则利用局部搜索的数据
{
glpshuliang=glpgeshu1;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang1[i];
}
}
else//否则利用全局搜索的数据
{
glpshuliang=glpgeshu2;
for(int i=0;i<jiedeweishu;i++)
{
xiangliang[i]=sheng_cheng_xiang_liang2[i];
}
}

chushi *chushizhongqunji;//建立一个用来储存种群的容器
chushizhongqunji=new chushi[glpshuliang];
int i,j;

float **glp_shu_zu;//生成一个glp数组
glp_shu_zu=new (float *[glpshuliang]);
for(i=0;i<glpshuliang;i++)
{
glp_shu_zu[i]=new float[jiedeweishu];//生成的glp向量用glp_shu_zu储存
}
glp glp_qiu_jie_first(glpshuliang,jiedeweishu);//定义生成多少组glp向量和向量的维数
glp_qiu_jie_first.glp_qiu_jie(glp_shu_zu,xiangliang);//将生成的glp向量用glp_shu_zu储存,同时将生成向量带入glp类
//cout<<"377"<<endl;
if(biao!=1)//如果寻优不成功则进入全局搜索
{
//cout<<"380"<<endl;////////////
float bianjiecha[jiedeweishu];
for(i=0;i<jiedeweishu;i++)
{
bianjiecha[i]=youbianjie3[i]-zuobianjie3[i];//计算上一代全局每一维范围的宽度
}
static float rou=0.9;//定义收缩比
//float rou=pow(0.5,gen);
for(i=0;i<jiedeweishu;i++)//确定新的范围
{
zuobianjie1[i]=zuiyougeti->geti[i]-rou*bianjiecha[i];//左边界为以最优个体为中心-范围宽度乘以收缩比
if(zuobianjie1[i]>zuobianjie2[i])//如果新的左边界比目前局部左边界大,那么以目前的为全局寻优的左边界
{
zuobianjie[i]=zuobianjie1[i];
zuobianjie3[i]=zuobianjie1[i];
}
else//否则以局部左边界为全局左边界
{
zuobianjie[i]=zuobianjie2[i];
zuobianjie3[i]=zuobianjie2[i];
}
youbianjie1[i]=zuiyougeti->geti[i]+rou*bianjiecha[i];//右边界为以最优个体为中心+范围宽度乘以收缩比
if(youbianjie1[i]<youbianjie2[i])
{
youbianjie[i]=youbianjie1[i];
youbianjie3[i]=youbianjie1[i];
}
else
{
youbianjie[i]=youbianjie2[i];
youbianjie3[i]=youbianjie2[i];
}
}
qsort(bianjiecha,jiedeweishu,sizeof(float),&cmp1);
if(cha==bianjiecha[0])//如果最大边界差不变的话就将收缩因子变小
{
rou=pow(rou,2);
}

cha=bianjiecha[0];
}
//cout<<"421"<<endl;/////////////////////
for(i=0;i<glpshuliang;i++)//根据新产生的最优个体确定glp群
{
for(j=0;j<jiedeweishu;j++)
{
chushizhongqunji[i].geti[j]=sishewuru((zuobianjie[j]+(youbianjie[j]-(zuobianjie[j]))*glp_shu_zu[i][j]));
}
}
for(i=0;i<glpshuliang;i++)
{
mubiaohanshu1(chushizhongqunji[i]);
}
qsort(chushizhongqunji,glpshuliang,sizeof(chushi),&cmpshiyingjiang);
zuiyougetijicunqi->shiying=zuiyougeti->shiying;
if(chushizhongqunji[0].shiying>zuiyougeti->shiying)
{
for(i=0;i<jiedeweishu;i++)
{
zuiyougeti->geti[i]=chushizhongqunji[0].geti[i];
}
zuiyougeti->shiying=chushizhongqunji[0].shiying;
biao=1;
}
else
{
// cout<<"446"<<endl;/////////////
biao=0;
}

if(biao==1)//如果寻优成功了就需要确立一个新的局部最优解范围
{
chushi *youxiugetiku;
youxiugetiku=new chushi[glpshuliang];
int jishuqi=0;
i=0;
while(chushizhongqunji[i].shiying>zuiyougetijicunqi->shiying)
{
for(int j=0;j<jiedeweishu;j++)
{
youxiugetiku[i].geti[j]=chushizhongqunji[i].geti[j];
}
i++;
}
jishuqi=i;
float *bianjiezancunqi;
bianjiezancunqi=new float[jishuqi];
for(i=0;i<jiedeweishu;i++)
{
for(int j=0;j<jishuqi;j++)
{
bianjiezancunqi[j]=youxiugetiku[j].geti[i];
}
qsort(bianjiezancunqi,jishuqi,sizeof(float),&cmp1);
zuobianjie[i]=bianjiezancunqi[jishuqi-1];
youbianjie[i]=bianjiezancunqi[0];
// cout<<zuobianjie[i]<<endl;//////////////
// cout<<youbianjie[i]<<endl;/////////////
// cout<<endl;///////////////
if(zuobianjie[i]<zuobianjie2[i])
{
zuobianjie[i]=zuobianjie2[i];
}
if(youbianjie[i]>youbianjie2[i])
{
youbianjie[i]=youbianjie2[i];
}
}
delete [] bianjiezancunqi;
delete [] youxiugetiku;
}

for(i=0;i<glpshuliang;i++)
{
delete [] glp_shu_zu[i];
}
delete [] glp_shu_zu;
delete [] chushizhongqunji;

}
void mubiaohanshu1(chushi &bianliang)//计算shiying
{
int i=0;
int sunshi,chanpin;
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]-1);
chanpin=chicun1*bianliang.geti[0]+chicun2*bianliang.geti[1]+chicun3*bianliang.geti[2]+chicun4*bianliang.geti[3];
bianliang.shiying=yuanmuchang-sunshi-chanpin;
if(bianliang.shiying!=0)//如果不能正好将木料分成所需尺寸则要多切一刀
{
sunshi=qiegesushi*(bianliang.geti[0]+bianliang.geti[1]+bianliang.geti[2]+bianliang.geti[3]);
}
if(bianliang.shiying<0)//罚函数
{
bianliang.shiying=bianliang.shiying+1e5;
}
bianliang.shiying=-bianliang.shiying;

}
int sishewuru(float x)
{
float y;
int z;
y=x-(int)x;
if(y<0.5)
{
z=(int)(x);
}
else
{
z=(int)x;
z=z+1;
}
return z;
}
glp.h源文件贴不下了,把你邮箱给我我发给你
邮箱:[email protected]

Ⅲ 求贪心算法题(Pascal)

背包问题
program beibao;

const
m=150;
n=7;
var
xu:integer;
i,j:integer;
goods:array[1..n,0..2] of integer;
ok:array[1..n,1..2] of real;

procere init;
var
i:integer;
begin
xu:=m;
for i:=1 to n do
begin
write('Enter the price and weight of the ',i,'th goods:');
goods[i,0]:=i;
read(goods[i,1],goods[i,2]);
readln;
ok[i,1]:=0; ok[i,2]:=0;
end;
end;

procere make;
var
bi:array[1..n] of real;
i,j:integer;
temp1,temp2,temp0:integer;
begin
for i:=1 to n do
bi[i]:=goods[i,1]/goods[i,2];
for i:=1 to n-1 do
for j:=i+1 to n do
begin
if bi[i]<bi[j] then begin
temp0:=goods[i,0]; temp1:=goods[i,1]; temp2:=goods[i,2];
goods[i,0]:=goods[j,0]; goods[i,1]:=goods[j,1]; goods[i,2]:=goods[j,2];
goods[j,0]:=temp0; goods[j,1]:=temp1; goods[j,2]:=temp2;
end;
end;
end;

begin
init;
make;
for i:=1 to 7 do
begin
if goods[i,2]>xu then break;
ok[i,1]:=goods[i,0]; ok[i,2]:=1;
xu:=xu-goods[i,2];
end;
j:=i;
if i<=n then
begin
ok[i,1]:=goods[i,0];
ok[i,2]:=xu/goods[i,2];
end;
for i:=1 to j do
writeln(ok[i,1]:1:0,':',ok[i,2]*goods[i,2]:2:1);
end.

旅行家问题
program jiayou;
const maxn=10001;
zero=1e-16;
type
jd=record
value,way,over:real;
end;
var oil:array[1..maxn] of ^jd;
n:integer;
d1,c,d2,cost,maxway:real;
function init:boolean;
var i:integer;
begin
new(oil[1]);
oil[1]^.way:=0;
read(d1,c,d2,oil[1]^.value,n);
maxway:=d2*c;
for i:=2 to n+1 do
begin
new(oil[i]);
readln(oil[i]^.way,oil[i]^.value);
oil[i]^.over:=0;
end;
inc(n,2);
new(oil[n]);
oil[n]^.way:=d1;
oil[n]^.value:=0;
oil[n]^.over:=0;
for i:=2 to n do
if oil[i]^.way-oil[i-1]^.way>maxway then
begin
init:=false;
exit
end;
init:=true;
end;
procere buy(i:integer;miles:real);
begin
cost:=cost+miles/d2*oil[i]^.value;
end;
procere solve;
var i,j:integer;
s:real;
begin
i:=1;j:=i+1;
repeat
s:=0.0;
while( s<=maxway+zero) and (j<=n-1) and (oil[i]^.value<=oil[j]^.value) do
begin
inc(j);
s:=s+oil[j]^.way-oil[j-1]^.way
end;
if s<=maxway+zero then
if (oil[i]^.over+zero>=oil[j]^.way-oil[i]^.way) then
oil[j]^.over:=oil[i]^.over-(oil[j]^.way-oil[i]^.way) else
begin
buy(i,oil[j]^.way-oil[i]^.way-oil[i]^.over);
oil[j]^.over:=0.0;
end
else begin
buy(i,maxway-oil[i]^.over);
j:=i+1;
oil[j]^.over:=maxway-(oil[j]^.way-oil[i]^.way);
end;
i:=j;
until i=n;
end;
begin
cost:=0;
if init then begin
solve;
writeln(cost:0:2);
end else writeln('No answer');
end.

n个部件,每个部件必须经过先A后B两道工序

program workorder;
const maxn=100;
type jd=record
a,b,m,o:integer;
end;
var n,min,i:integer;
c:array[1..maxn] of jd;
order:array[1..maxn] of integer;
procere init;
var i:integer;
begin
readln(n);
for i:=1 to n do
read(c[i].a);
readln;
for i:=1 to n do
read(c[i].b);
readln;
for i:=1 to n do
begin
if c[i].a<c[i].b then c[i].m:=c[i].a else c[i].m:=c[i].b;
c[i].o:=i;
end;
end;
procere sort;
var i,j,k,t:integer;
temp:jd;
begin
for i:=1 to n-1 do
begin
k:=i;t:=c[i].m;
for j:=i+1 to n do
if c[j].m<t then begin t:=c[j].m;k:=j end ;
if k<>i then begin temp:=c[i];c[i]:=c[k];c[k]:=temp end
end;
end;
procere playorder;
var i,s,t:integer;
begin
fillchar(order,sizeof(order),0);
s:=1;
t:=n;
for i:=1 to n do
if c[i].m=c[i].a then begin order[s]:=i;s:=s+1 end
else begin order[t]:=i;t:=t-1;end;
end;
procere calc_t;
var i,t1,t2:integer;
begin
t1:=0;t2:=0;
for i:=1 to n do
begin
t1:=t1+c[order[i]].a;
if t2<t1 then t2:=t1;
t2:=t2+c[order[i]].b;
end;
min:=t2;
end;
begin
init;
sort;
playorder;
calc_t;
writeln(min);
for i:=1 to n do
write(c[order[i]].o,' ');
writeln;
end.

没时间写了凑合着看看,履行承诺啊追加分数

Ⅳ 怎样应用贪心算法求得最优解

动态规划要求。。具有最优子结构,记f[i]最优时,f[i - 1]的解也最优。。。最终可以得到最优解

贪心算法,一般只能得到近优解或者局部最优解。。

Ⅳ Pascal贪心算法,求解答!

这道题用贪心不大好吧
记得老师以前说过
这种题用DP
这道题是最简单的01背包
我给你发个资料
那个,发不了啊,上传失败
你给我qq吧
P01: 01背包问题
题目
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”;如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

注意f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。如果将状态的定义中的“恰”字去掉,在转移方程中就要再加入一项f[i][v-1],这样就可以保证f[N] [V]就是最后的答案。至于为什么这样就可以,由你自己来体会了。

优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f [0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i -1][v-c[i]]的值。伪代码如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

总结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

P02: 完全背包问题
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本思路
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。仍然可以按照每种物品不同的策略写出状态转移方程,像这样:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间则不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。

将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。但我们还是试图改进这个复杂度。

一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。最简单的想法是,考虑到第i种物品最多选V/c [i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

更高效的转化方法是:把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。 但我们有更优的O(VN)的算法。 * O(VN)的算法 这个算法使用一维数组,先看伪代码: <pre class"example"> for i=1..N for v=0..Vf[v]=max{f[v],f[v-c[i]]+w[i]};

你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v= 0..V的顺序循环。这就是这个简单的程序为何成立的道理。

这个算法也可以以另外的思路得出。例如,基本思路中的状态转移方程可以等价地变形成这种形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},将这个方程用一维数组实现,便得到了上面的伪代码。

总结
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。

P03: 多重背包问题
题目
有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

基本算法
这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。

转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑logn[i])的01背包问题,是很大的改进。

O(VN)的算法
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O(1)的时间求解。由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。

小结
这里我们看到了将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并用尽量简洁的程序来实现。

P04: 混合三种背包问题
问题
如果将P01、P02、P03混合起来。也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。应该怎么求解呢?

01背包与完全背包的混合
考虑到在P01和P02中最后给出的伪代码只有一处不同,故如果只有两类物品:一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。伪代码如下:

for i=1..N
if 第i件物品是01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品是完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};

再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:遇到多重背包类型的物品用单调队列解即可。但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(log n[i])个01背包的物品的方法也已经很优了。

小结
有人说,困难的题目都是由简单的题目叠加而来的。这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
P05: 二维费用的背包问题
问题
二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。

算法
费用加了一维,只需状态也加一维即可。设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。状态转移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二维的数组:当每件物品只可以取一次时变量v和u采用顺序的循环,当物品有如完全背包问题时采用逆序的循环。当物品有如多重背包问题时拆分物品。

物品总个数的限制
有时,“二维费用”的条件是以这样一种隐含的方式给出的:最多只能取M件物品。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。

另外,如果要求“恰取M件物品”,则在f[0..V][M]范围内寻找答案。

小结
事实上,当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。希望你能从本讲中初步体会到这种方法。

P06: 分组的背包问题
问题
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

算法
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}。

使用一维数组的伪代码如下:

for 所有的组k
for 所有的i属于组k
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]}

另外,显然可以对每组中的物品应用P02中“一个简单有效的优化”。

小结
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。

P07: 有依赖的背包问题
简化的问题
这种背包问题的物品间存在某种“依赖”的关系。也就是说,i依赖于j,表示若选物品i,则必须选物品j。为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;另外,没有某件物品同时依赖多件物品。

算法
这个问题由NOIP2006金明的预算方案一题扩展而来。遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。

按照背包问题的一般思路,仅考虑一个主件和它的附件集合。可是,可用的策略非常多,包括:一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。(事实上,设有n个附件,则策略有2^n+1个,为指数级。)

考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中的一个物品组,每个选择了主件又选择了若干个附件的策略对应于这个物品组中的一个物品,其费用和价值都是这个策略中的物品的值的和。但仅仅是这一步转化并不能给出一个好的算法,因为物品组中的物品还是像原问题的策略一样多。

再考虑P06中的一句话: 可以对每组中的物品应用P02中“一个简单有效的优化”。这提示我们,对于一个物品组中的物品,所有费用相同的物品只留一个价值最大的,不影响结果。所以,我们可以对主件i的“附件集合”先进行一次01背包,得到费用依次为0..V-c[i]所有这些值时相应的最大价值f'[0..V-c[i]]。那么这个主件及它的附件集合相当于V-c[i]+1个物品的物品组,其中费用为c[i]+k的物品的价值为f'[k]+w[i]。也就是说原来指数级的策略中有很多策略都是冗余的,通过一次01背包后,将主件i转化为 V-c[i]+1个物品的物品组,就可以直接应用P06的算法解决问题了。

更一般的问题
更一般的问题是:依赖关系以图论中“森林”的形式给出(森林即多叉树的集合),也就是说,主件的附件仍然可以具有自己的附件集合,限制只是每个物品最多只依赖于一个物品(只有一个主件)且不出现循环依赖。

解决这个问题仍然可以用将每个主件及其附件集合转化为物品组的方式。唯一不同的是,由于附件可能还有附件,就不能将每个附件都看作一个一般的01 背包中的物品了。若这个附件也有附件集合,则它必定要被先转化为物品组,然后用分组的背包问题解出主件及其附件集合所对应的附件组中各个费用的附件所对应的价值。

事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性。这已经触及到了“泛化物品”的思想。看完P08后,你会发现这个“依赖关系树”每一个子树都等价于一件泛化物品,求某节点为根的子树对应的泛化物品相当于求其所有儿子的对应的泛化物品之和。

小结
NOIP2006的那道背包问题我做得很失败,写了上百行的代码,却一分未得。后来我通过思考发现通过引入“物品组”和“依赖”的概念可以加深对这题的理解,还可以解决它的推广问题。用物品组的思想考虑那题中极其特殊的依赖关系:物品不能既作主件又作附件,每个主件最多有两个附件,可以发现一个主件和它的两个附件等价于一个由四个物品组成的物品组,这便揭示了问题的某种本质。

我想说:失败不是什么丢人的事情,从失败中全无收获才是。

P08: 泛化物品
定义
考虑这样一种物品,它并没有固定的费用和价值,而是它的价值随着你分配给它的费用而变化。这就是泛化物品的概念。

更严格的定义之。在背包容量为V的背包问题中,泛化物品是一个定义域为0..V中的整数的函数h,当分配给它的费用为v时,能得到的价值就是h(v)。

这个定义有一点点抽象,另一种理解是一个泛化物品就是一个数组h[0..V],给它费用v,可得到价值h[V]。

一个费用为c价值为w的物品,如果它是01背包中的物品,那么把它看成泛化物品,它就是除了h(c)=w其它函数值都为0的一个函数。如果它是完全背包中的物品,那么它可以看成这样一个函数,仅当v被c整除时有h(v)=v/c*w,其它函数值均为0。如果它是多重背包中重复次数最多为n的物品,那么它对应的泛化物品的函数有h(v)=v/c*w仅当v被c整除且v/c<=n,其它情况函数值均为0。

一个物品组可以看作一个泛化物品h。对于一个0..V中的v,若物品组中不存在费用为v的的物品,则h(v)=0,否则h(v)为所有费用为v的物品的最大价值。P07中每个主件及其附件集合等价于一个物品组,自然也可看作一个泛化物品。

泛化物品的和
如果面对两个泛化物品h和l,要用给定的费用从这两个泛化物品中得到最大的价值,怎么求呢?事实上,对于一个给定的费用v,只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于0..V的每一个整数v,可以求得费用v分配到h和l中的最大价值f(v)。也即f(v)=max{h(k)+l(v-k)|0<=k<=v}。可以看到,f也是一个由泛化物品h和l决定的定义域为0..V的函数,也就是说,f是一个由泛化物品h和 l决定的泛化物品。

由此可以定义泛化物品的和:h、l都是泛化物品,若泛化物品f满足f(v)=max{h(k)+l(v-k)|0<=k<=v},则称f是h与l的和,即f=h+l。这个运算的时间复杂度是O(V^2)。

泛化物品的定义表明:在一个背包问题中,若将两个泛化物品代以它们的和,不影响问题的答案。事实上,对于其中的物品都是泛化物品的背包问题,求它的答案的过程也就是求所有这些泛化物品之和的过程。设此和为s,则答案就是s[0..V]中的最大值。

背包问题的泛化物品
一个背包问题中,可能会给出很多条件,包括每种物品的费用、价值等属性,物品之间的分组、依赖等关系等。但肯定能将问题对应于某个泛化物品。也就是说,给定了所有条件以后,就可以对每个非负整数v求得:若背包容量为v,将物品装入背包可得到的最大价值是多少,这可以认为是定义在非负整数集上的一件泛化物品。这个泛化物品——或者说问题所对应的一个定义域为非负整数的函数——包含了关于问题本身的高度浓缩的信息。一般而言,求得这个泛化物品的一个子域(例如0..V)的值之后,就可以根据这个函数的取值得到背包问题的最终答案。

综上所述,一般而言,求解背包问题,即求解这个问题所对应的一个函数,即该问题的泛化物品。而求解某个泛化物品的一种方法就是将它表示为若干泛化物品的和然后求之。

小结
本讲可以说都是我自己的原创思想。具体来说,是我在学习函数式编程的 Scheme 语言时,用函数编程的眼光审视各类背包问题得出的理论。这一讲真的很抽象,也许在“模型的抽象程度”这一方面已经超出了NOIP的要求,所以暂且看不懂也没关系。相信随着你的OI之路逐渐延伸,有一天你会理解的。

我想说:“思考”是一个OIer最重要的品质。简单的问题,深入思考以后,也能发现更多。

P09: 背包问题问法的变化
以上涉及的各种背包问题都是要求在背包容量(费用)的限制下求可以取到的最大价值,但背包问题还有很多种灵活的问法,在这里值得提一下。但是我认为,只要深入理解了求背包问题最大价值的方法,即使问法变化了,也是不难想出算法的。

例如,求解最多可以放多少件物品或者最多可以装满多少背包的空间。这都可以根据具体问题利用前面的方程求出所有状态的值(f数组)之后得到。

还有,如果要求的是“总价值最小”“总件数最小”,只需简单的将上面的状态转移方程中的max改成min即可。

Ⅵ 5.贪心算法的核心思想。6.什么是递归什么是迭代两者的区别,举例说明。7.回溯的含义是什么举例

1、贪心算法主要是把问题分成很多局部问题,用局部最优解合成整体最优解。因此使用这种算法需要此问题满足两个条件,一个是能够分成多个能够求解的局部问题,第二个就是局部问题的解能够合成最优解。和动态规划、回溯等相比差别就是再不回溯的前提下找出整体最优解或者接近最优解,速度快但应用有比较大的限制。

2、迭代也叫递推,通过重复执行某一步骤或者函数来求得计算结果
递归是指函数中直接或者间接调用自身
举例:
求a乘以2的10次方等于几
迭代:
for (i=0;i<10;i++)
a *= 2;

递归:
int db(int a,int num)
{
if (num<10)
return 2 * db(a,num+1);
else
return 1;
}

db(a,0);

3、回溯的含义就是在搜索问题的状态过程中,如果不能继续前进,再向后回到岔口,换一条路继续搜索,直到搜索完所有状态或者查找到需要的状态。
举例:(最典型的就是树的深度搜索,下面举一个简单的例子)
int a[10]={5,3,7,9,3,2,5,6,9,1};//从3开始查找1
int read[10]=(0);//是否查找过
int readNum = 0;//查找过的个数
int forward = 1;//1为左,2为右
int tmp = 0,index = 5;

tmp = a[index];
read[index] = 1;
readNum++;
while (tmp != 1 || readNum != 10)
{
if (forward == 1)
index --;
else
index++;
if (!read[index])
{
tmp = a[index];
read[index] = 1;
readNum++;
}

if (index <=0 || index>=9)
forward = 3 - forward;
}

Ⅶ 大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系

对于,大学课程《算法分析与设计》中动态规划和贪心算法的区别和联系这个问题,首先要来聊聊他们的联系:1、都是一种推导算法;2、将它们分解为子问题求解,它们都需要有最优子结构。这两个特征师门的联系。

拓展资料:

贪婪算法是指在解决问题时,它总是在当前做出最佳选择。也就是说,在不考虑全局优化的情况下,该算法在某种意义上获得了局部最优解。贪婪算法不能得到所有问题的全局最优解。关键是贪婪策略的选择。

动态规划是运筹学的一个分支,是解决决策过程优化的过程。20世纪50年代初,美国数学家R·贝尔曼等人在研究多阶段决策过程的最优化问题时,提出了着名的最优化原理,建立了动态规划。动态规划在工程技术、经济、工业生产、军事和自动控制等领域有着广泛的应用,在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题上都取得了显着的成果。

Ⅷ 关于贪心算法的应用范围的问题

满足最优子结构。做这些题最先肯定是要写状态转移方程的,其实从状态转移方程上就可看出来,简单的说就是把状态转移方程写出来以后是类似这么个形式:s[i]=max{s[i-1]+c1,s[i-2]+c1,.....}+c2其中c1,c2为不随各个具体状态而变的常数。也就是说消去公共常数偏移(或者是*比例放缩)后这个max(min)函数是可以直接地一直写到底,构成一个只有max(min,或两者均有)的式子。而动态规划的式子中的各个子状态部分是要和一个非常值函数(这些函数的自变量与状态或状态的转移方式有关)运算的,也就是说如果迭代地写到底,会有大量函数(这些函数的自变量与状态或状态的转移方式有关)存在。

热点内容
iis配置php5 发布:2025-01-21 14:08:19 浏览:273
凯叔讲故事为什么联系不到服务器 发布:2025-01-21 13:56:50 浏览:386
linux镜像文件下载 发布:2025-01-21 13:34:36 浏览:217
百度云破解解压 发布:2025-01-21 13:33:50 浏览:896
冰箱压缩机拆卸视频 发布:2025-01-21 13:33:50 浏览:963
压缩空气体积 发布:2025-01-21 13:27:21 浏览:472
百度地图存储位置 发布:2025-01-21 13:26:28 浏览:90
搬砖脚本怎么写 发布:2025-01-21 13:19:06 浏览:716
感动人物拍摄脚本 发布:2025-01-21 13:09:12 浏览:681
插件编程用 发布:2025-01-21 13:04:07 浏览:217