算法的时间复杂度是指
Ⅰ 时间复杂度和空间复杂度分别是什么
时间复杂度,又称时间复杂性,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1)。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。
时间复杂度和空间复杂度资料:
算法复杂度分为时间复杂度和空间复杂度。其作用:时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。(算法的复杂性体运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度。
对于一个算法,其时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;反之,当追求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。
以上内容参考网络——时间复杂度
以上内容参考网络——空间复杂度
Ⅱ 算法的时间复杂度是指
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。算法的
Ⅲ 什么是时间复杂度、空间复杂度
1、时间复杂度:是指一个算法中的语句执行次数。
算法分析的目的在于选择合适算法和改进算法。
2、空间复杂度:是对一个算法在运行过程中临时占用存储空间的度量。
一个算法在计算机存储器上所占用的存储空间包括存储算法本身所占用的空间,算数和输入输出所占用的存储空间以及临时占用存储空间三个部分。
(3)算法的时间复杂度是指扩展阅读:
在一个算法中,时间复杂度和空间复杂度往往是相互影响的。当追求一个较好的时间复杂度时,可能会使空间复杂度的性能变差,即可能导致占用较多的存储空间;
反之,当追求一个较好的空间复杂度时,可能会使时间复杂度的性能变差,即可能导致占用较长的运行时间。
另外,算法的所有性能之间都存在着或多或少的相互影响。因此,当设计一个算法(特别是大型算法)时,要综合考虑算法的各项性能,算法的使用频率,算法处理的数据量的大小,算法描述语言的特性,算法运行的机器系统环境等各方面因素,才能够设计出比较好的算法。
算法的时间复杂度和空间复杂度合称为算法的复杂度
Ⅳ 算法的时间复杂度是什么
执行一个算法所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。一个算法花费的时间与算法中语句的执行次数成正比例,算法中哪个语句的执行次数多,它花费的时间就多。
1.语句频度在算法中一个语句的执行次数称为语句频度或时间频度,记为T(n)。
2)算法的渐进时间复杂度一般情况下,算法的执行时间T是问题规模n的函数,记作T(n)。要精确地表示算法的运行时间函数常常是很困难的,即使能够给出,也可能是个相当复杂的函数,函数的求解本身也是相当复杂的。为了客观地反映一个算法的执行时间,可以用算法中基本语句的执行次数的数量级来度量算法的工作量,称作算法的渐进时间复杂度,简称时间复杂度,通常用O来表示。
Ⅳ 算法时间复杂度指的是什么
时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。
空间复杂性介绍
空间复杂性是指计算所需的存储单元数量。隶属于计算复杂性(计算复杂性由空间复杂性和时间复杂性两部分组成)。算法的复杂性是算法运行所需要的计算机资源的量,需要时间资源量称为时间复杂性,需要空间资源的量成为空间复杂性。
一个算法的空间复杂度S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。算法的时间复杂度和空间复杂度合称为算法的复杂度。
Ⅵ 算法的时间复杂度是
算法的时间复杂度,是指算法中基本操作重复执行的次数,是问题个,规模n的某函数。如果有某个辅助函数f(n)使得,基本操作执行的次数,与这个函数值趋于无穷大时的比值,是一个不等于零的常数,那么就称函数的时间复杂度是f(n)
Ⅶ 算法的时间复杂度什么意思
算法的时间复杂度通俗的讲就是执行算法所需要的时间(执行多少次赋值、比较、判断等操作)
为了方便比较,算法的时间复杂度计算的通常的做法是,从算法选取一种对于所研究的问题(或算法模型)来说是基本运算的操作,以其重复执行的次数作为评价算法时间。该基本操作多数情况下是由算法最深层环内的语句表示的,基本操作的执行次数实际上就是相应语句的执行次数。
再给你举个简单的例子吧:
for(int i = 0; i < n;++i)
;
这个循环执行n次 所以时间复杂度是O(n)
for(int i = 0; i< n;++i)
{
for(int j = 0; j< n;++j)
;
}
这嵌套的两个循环 而且都执行n次
那么它的时间复杂度就是 O(n^2)
时间复杂度只能大概的表示所用的时间
而一些基本步骤所运行的时间不同,但是由于很难精确无法计算,所以省略
如:
for(int i = 0;i < n;++i)
a = b;
和
for(int i = 0;i < n;++i)
;
这个运行的时间当然是第二个快,但是他们的时间复杂度都是 O(n) ,
由于a=b运算时间可以忽略不计,所以判断时间复杂度主要看循环的复杂度
Ⅷ 算法的时间复杂度是指什么具体点
算法复杂度不是简单的时间的度量
是用来评价算法优劣程度的依据
比如,一个程序要扫描100 * n * n + 10000 * n + 99999遍,那么时间复杂度是O(n^2)
也就是说,时间复杂度只取次数最高的项,并且忽略系数
所以,时间复杂度是用来描述随着 n 的增大,算法耗时“增大”的!不是用来描述运行所花时间的(这个我们初中老师给我们强调了半天)
还有一点,O(9999999999)(实际应写为O(1),这里只是表达意思)和O(n)的算法那个好?
答案是O(9999999999),因为他的耗时不随n的增大而变化,所以他更优
一般来说,算法的好坏是这样的 (>表示好于) O(1) > O(logn) > O(n) > O(n logn) > O(n^2) > O(n^3) > O(2^n) > O(n!)