当前位置:首页 » 操作系统 » 智能分析算法

智能分析算法

发布时间: 2022-07-16 08:45:17

1. 智能算法有哪些

(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。
常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。

2. 智能识别与行为分析算法主要应用在什么领域它的基本原理是什么

智能识别与行为分析算法主要是针对视频监控领域出现的诸多困扰(如监控人员局限性、人工无法实时监看众多摄像头等)而采取的基于多种行为(如越界,徘徊,遗留,消失,逆行等)的视频检测,从而真正实现全天候的实时监控。
其中,识别是对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,而智能识别是在识别的基础上,通过机器学习和训练来完成识别事物、推理决策、预测未来等任务,从而形成由机器独立完成辨认事物的完整系统。简单的说,智能识别与行为分析算法就是采用先进的智能图像处理算法,辨别不同环境中监控物体的行为,例如拌线、入侵、滞留、徘徊等,可以连续追踪移动或静止的物体,并具有焰火烟雾检测等功能。
前沿智能识别与行为分析算法技术,可咨询北京中电兴发科技有限公司。

3. 大数据工程师需了解的大数据智能分析能力有哪些

【导语】社会数字化的形成仍需一定的时间,大数据智能分析要达到我们梦想的高度,紧跟大数据技术发展,更应当注重当前数字化背景下,大数据智能分析的特性以及所需具备的能力,那么大数据工程师需了解的大数据智能分析能力有哪些呢?

1、多源大数据的采集和处理能力

只有实现对大量不同结构的原始数据准确、实时的采集,并实现对不同结构数据的融合标准化处理,才能保证大数据智能分析的源头“正本清源”。

2、数据挖掘算法能力

数据挖掘和算法将集群、分割、孤立的分析,通过内部探讨和挖掘,通过各类工具,能够从文档、照片等非结构数据中提取智能数据信息,解决好数据量和速度的问题,成为大数据智能分析的内核助力。

3、预测分析能力

数据挖掘算法让数据分析能够更好的理解数据,通过建模对数据挖掘结果进行可预测性的判断尤为重要。可以说,预测分析能力是大数据智能分析的本身要义。

4、数据质量管理能力

通过对不同平台、不同结构、不同类型的有效智能管理和实践,从而构建合理的不同类型的数据库,是进行大数据智能分析的关键。

5、可视化能力

数据可视化是大数据智能分析最基本的要求,通过可视化可以直观的展示数据,让数据动起来,让数据自己说话。

6、智能分析技术产品化能力

数据产业发展至今,数据分析技术已不再是护城河。未来数据是竞争要点,应用场景是关键,当务之急是技术服务化、服务平台化、平台产品化,让智能分析技术尽快实现商业化落地。

关于大数据工程师需了解的大数据智能分析能力,就给大家说明到这里了,未来社会是信息社会、智能化社会,所以大数据在未来也会发挥更加重要的作用,希望大家抓住机会。

4. 智能算法的智能算法概述

智能优化算法要解决的一般是最优化问题。最优化问题可以分为(1)求解一个函数中,使得函数值最小的自变量取值的函数优化问题和(2)在一个解空间里面,寻找最优解,使目标函数值最小的组合优化问题。典型的组合优化问题有:旅行商问题(Traveling Salesman Problem,TSP),加工调度问题(Scheling Problem),0-1背包问题(Knapsack Problem),以及装箱问题(Bin Packing Problem)等。
优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,本文介绍的模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。
优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。
一般而言,局部搜索就是基于贪婪思想利用邻域函数进行搜索,若找到一个比现有值更优的解就弃前者而取后者。但是,它一般只可以得到“局部极小解”,就是说,可能这只兔子登“登泰山而小天下”,但是却没有找到珠穆朗玛峰。而模拟退火,遗传算法,禁忌搜索,神经网络等从不同的角度和策略实现了改进,取得较好的“全局最小解”。

5. 人工智能算法有哪些

人工智能算法有:决策树、随机森林算法、逻辑回归、SVM、朴素贝叶斯、K最近邻算法、K均值算法、Adaboost算法、神经网络、马尔可夫。

6. 什么是智能算法

在工程实践中,经常会接触到一些比较“新颖”的算法或理论,比如模拟退火,遗传算法,禁忌搜索,神经网络等。这些算法或理论都有一些共同的特性(比如模拟自然过程),通称为“智能算法”。

7. 什么是智能优化算法

群体智能优化算法是一类基于概率的随机搜索进化算法,各个算法之间存在结构、研究内容、计算方法等具有较大的相似性。因此,群体智能优化算法可以建立一个基本的理论框架模式:

Step1:设置参数,初始化种群;

Step2:生成一组解,计算其适应值;

Step3:由个体最有适应着,通过比较得到群体最优适应值;

Step4:判断终止条件示否满足?如果满足,结束迭代;否则,转向Step2;

各个群体智能算法之间最大不同在于算法更新规则上,有基于模拟群居生物运动步长更新的(如PSO,AFSA与SFLA),也有根据某种算法机理设置更新规则(如ACO)。

(7)智能分析算法扩展阅读

优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。

优化思想里面经常提到邻域函数,它的作用是指出如何由当前解得到一个(组)新解。其具体实现方式要根据具体问题分析来定。

8. 智能算法

智能信息处理研究方向

一、 科研方向意义
智能信息处理是人工智能(AI)的一个重要研究领域。在世界各地对人工智能的研究很早就开始了,当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具,而人工智能也始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。随着理论研究的不断深入和应用领域的迅速扩大,近年来智能信息处理成了人工智能的一个热门研究方向,我国各高等院校都成立了关于智能信息处理的研究机构。他们立足于信息处理技术的基础研究和应用,积极地将数学、人工智能、逻辑学、认知科学等领域最新研究成果应用于各种信息的智能处理,在模式识别与人工智能、数据库与数据仓库的挖掘技术、信息网络安全与数据保密技术等方面取得了较好的研究成果,在带动其院校学科建设的同时,也努力扩大了信息技术在国民经济各领域的应用,提高了信息处理技术的社会效应和经济效益。
二、主要研究方向
模式识别与人工智能
数据挖掘算法
优化决策支持系统
商用智能软件
三、研究目标
以促进本学科的建设为目标,加强智能理论的研究,并侧重智能系统的开发应用工作。在理论上,配合本硕学生的教学工作,在模式识别与人工智能、数据挖掘和智能算法等方面进行深入研究,取得比较深入的理论研究成果,从而使学生掌握这方面最新的知识理论,为他们在以后的研究和工作中打下坚实的基础,进一步可以独立研究并取得更大的成就。在智能应用上,我们要根据现有的基础条件,进一步加强梯队人员和素质的建设,形成一支结构合理、充满活力、人员稳定的研究队伍;建立并扩展与外界的合作关系,将最新的理论研究成果转化为生产力,开发出企业急需的、先进的智能控制和信息处理软件系统,从而在为社会做贡献的同时提高我校的声誉,有利于我校的招生和就业。本方向的研究工作还会促进学生实验实践环节的质量,从根本上提高毕业生的素质。

9. 智能算法包括哪些

智能算法是指在工程实践中经常会接触到一些比较新颖的算法或理论,比如模拟退火遗传算法,禁忌搜索神经网络天牛须搜索算法,麻雀搜索算法

热点内容
猪猪侠脚本没反应 发布:2025-01-22 08:08:37 浏览:811
赛博朋克跟永劫无间哪个配置高 发布:2025-01-22 08:07:07 浏览:534
请尽快上传 发布:2025-01-22 08:06:22 浏览:188
河北编程培训 发布:2025-01-22 08:01:42 浏览:591
a星算法视频 发布:2025-01-22 07:55:01 浏览:878
快手安卓怎么直播 发布:2025-01-22 07:54:58 浏览:937
买服务器搭建vpn 发布:2025-01-22 07:53:21 浏览:808
路由器忘记密码如何解 发布:2025-01-22 07:38:47 浏览:154
5分钟视频编译 发布:2025-01-22 07:36:33 浏览:772
asp执行存储过程 发布:2025-01-22 07:35:55 浏览:127