当前位置:首页 » 操作系统 » 遗传算法聚类

遗传算法聚类

发布时间: 2022-07-11 22:49:40

Ⅰ 用于数据挖掘的聚类算法有哪些,各有何优势

聚类方法的分类,主要分为层次化聚类算法,划分式聚类算法,基于密度的聚类算法,基于网格的聚类算法,基于模型的聚类算法等。

而衡量聚类算法优劣的标准主要是这几个方面:处理大的数据集的能力;处理任意形状,包括有间隙的嵌套的数据的能力;算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序;处理数据噪声的能力;是否需要预先知道聚类个数,是否需要用户给出领域知识;算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

.聚类算法主要有两种算法,一种是自下而上法(bottom-up),一种是自上而下法(top-down)。这两种路径本质上各有优势,主要看实际应用的时候要根据数据适用于哪一种,Hierarchical methods中比较新的算法有BIRCH主要是在数据体量很大的时候使用;ROCK优势在于异常数据抗干扰性强……

关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。

Ⅱ 遗传算法是数据挖掘算法吗

不是啊,这两个应该属于不同的东西。遗传算法是一种组合优化算法,能用于规则规划、智能调度和工程优化。数据挖掘(机器学习)学科包括1,学习理论(泛化问题)、2,模型(svm,maxentropy)、3,算法(IIS,Netown,smo)和4,应用(推荐系统、NLP)。遗传算法应该和3算法比较相近,区别在于数据挖掘(机器学习)的算法几乎都是数值优化方面的,而遗传算法是组合优化的。虽然有些时候数据挖掘(机器学习)也会利用遗传算法,比如神经网络的最优结构的确定,但整体来说,遗传算法不是数据挖掘(机器学习)算法。

Ⅲ 数据挖掘有哪几种方法

1、神经元网络办法


神经元网络由于本身优良的健壮性、自组织自适应性、并行计算、遍及贮存和高宽比容错机制等特色特别适合处理数据发掘的难题,因而近些年愈来愈遭受大家的关心。


2、遗传算法


遗传算法是一种依据微生物自然选择学说与基因遗传原理的恣意优化算法,是一种仿生技能全局性提升办法。遗传算法具有的暗含并行性、便于和其他实体模型交融等特性促使它在数据发掘中被多方面运用。


3、决策树算法办法


决策树算法是一种常见于预测模型的优化算法,它依据将很多数据信息有目地归类,从这当中寻找一些有使用价值的,潜在性的信息。它的要害优势是叙说简易,归类速度更快,十分适宜规模性的数据处理办法。


粗集基础理论是一种科学研究不精准、不确定性专业知识的数学工具。粗集办法几个优势:不必得出附加信息;简单化键入信息的表述室内空间;优化算法简易,便于实际操作。粗集处理的方针是附近二维关系表的信息表。


4、遮盖正例抵触典例办法


它是使用遮盖悉数正例、抵触悉数典例的观念来找寻规范。最先在正例结合中随意选择一个种子,到典例结合中逐一较为。与字段名赋值组成的选择子相溶则舍弃,反过来则保存。按此观念循环系统悉数正例种子,将获得正例的规范(选择子的合取式)。


5、数据剖析办法


数据库查询字段名项中心存有二种相关:函数关系和相关剖析,对他们的剖析可选用应用统计学办法,即使用统计学原理对数据库查询中的信息展开剖析。可展开常见统计剖析、多元回归剖析、相关性剖析、差异剖析等。


6、含糊集办法


即使用含糊不清结合基础理论对具体难题展开含糊不清评定、含糊不清管理决策、含糊不清系统识别和含糊聚类剖析。系统软件的多元性越高,抽象性越强,一般含糊不清结合基础理论是用从属度来描绘含糊不清事情的亦此亦彼性的。


关于大数据在市场营销方面的优势有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅳ 数据挖掘的常用方法有哪些

1、决策树法

决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。


2、神经网络法


神经网络法是模拟生物神经系统的结构和功能,是一种通过训练来学习的非线性预测模型,它将每一个连接看作一个处理单元,试图模拟人脑神经元的功能,可完成分类、聚类、特征挖掘等多种数据挖掘任务。神经网络的学习方法主要表现在权值的修改上。其优点是具有抗干扰、非线性学习、联想记忆功能,对复杂情况能得到精确的预测结果;缺点首先是不适合处理高维变量,不能观察中间的学习过程,具有“黑箱”性,输出结果也难以解释;其次是需较长的学习时间。神经网络法主要应用于数据挖掘的聚类技术中。


3、关联规则法


关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。


4、遗传算法


遗传算法模拟了自然选择和遗传中发生的繁殖、交配和基因突变现象,是一种采用遗传结合、遗传交叉变异及自然选择等操作来生成实现规则的、基于进化理论的机器学习方法。它的基本观点是“适者生存”原理,具有隐含并行性、易于和其他模型结合等性质。主要的优点是可以处理许多数据类型,同时可以并行处理各种数据;缺点是需要的参数太多,编码困难,一般计算量比较大。遗传算法常用于优化神经元网络,能够解决其他技术难以解决的问题。


5、聚类分析法


聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。根据定义可以把其分为四类:基于层次的聚类方法;分区聚类算法;基于密度的聚类算法;网格的聚类算法。常用的经典聚类方法有K-mean,K-medoids,ISODATA等。


6、模糊集法


模糊集法是利用模糊集合理论对问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。模糊集合理论是用隶属度来描述模糊事物的属性。系统的复杂性越高,模糊性就越强。


7、web页挖掘


通过对Web的挖掘,可以利用Web的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。


8、逻辑回归分析


反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。


9、粗糙集法


是一种新的处理含糊、不精确、不完备问题的数学工具,可以处理数据约简、数据相关性发现、数据意义的评估等问题。其优点是算法简单,在其处理过程中可以不需要关于数据的先验知识,可以自动找出问题的内在规律;缺点是难以直接处理连续的属性,须先进行属性的离散化。因此,连续属性的离散化问题是制约粗糙集理论实用化的难点。


10、连接分析


它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于企业的研究。

Ⅳ 十三种常用的数据挖掘的技术

十三种常用的数据挖掘的技术
一、前 沿
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
二、数据挖掘技术简述
数据挖掘的技术有很多种,按照不同的分类有不同的分类法。下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。
1、统计技术
数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。
2、关联规则
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之I司存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。
3、基于历史的MBR(Memory-based Reasoning)分析
先根据经验知识寻找相似的情况,然后将这些情况的信息应用于当前的例子中。这个就是MBR(Memory Based Reasoning)的本质。MBR首先寻找和新记录相似的邻居,然后利用这些邻居对新数据进行分类和估值。使用MBR有三个主要问题,寻找确定的历史数据;决定表示历史数据的最有效的方法;决定距离函数、联合函数和邻居的数量。
4、遗传算法GA(Genetic Algorithms)
基于进化理论,并采用遗传结合、遗传变异、以及自然选择等设计方法的优化技术。主要思想是:根据适者生存的原则,形成由当前群体中最适合的规则组成新的群体,以及这些规则的后代。典型情况下,规则的适合度(Fitness)用它对训练样本集的分类准确率评估。
5、聚集检测
将物理或抽象对象的集合分组成为由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其它簇中的对象相异。相异度是根据描述对象的属眭值来计算的,距离是经常采用的度量方式。
6、连接分析
连接分析,Link analysis,它的基本理论是图论。图论的思想是寻找一个可以得出好结果但不是完美结果的算法,而不是去寻找完美的解的算法。连接分析就是运用了这样的思想:不完美的结果如果是可行的,那么这样的分析就是一个好的分析。利用连接分析,可以从一些用户的行为中分析出一些模式;同时将产生的概念应用于更广的用户群体中。
7、决策树
决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。
8、神经网络

在结构上,可以把一个神经网络划分为输入层、输出层和隐含层。输入层的每个节点对应—个个的预测变量。输出层的节点对应目标变量,可有多个。在输入层和输出层之间是隐含层(对神经网络使用者来说不可见),隐含层的层数和每层节点的个数决定了神经网络的复杂度。
除了输入层的节点,神经网络的每个节点都与很多它前面的节点(称为此节点的输入节点)连接在一起,每个连接对应一个权重Wxy,此节点的值就是通过它所有输入节点的值与对应连接权重乘积的和作为—个函数的输入而得到,我们把这个函数称为活动函数或挤压函数。
9、粗糙集
粗糙集理论基于给定训练数据内部的等价类的建立。形成等价类的所有数据样本是不加区分的,即对于描述数据的属性,这些样本是等价的。给定现实世界数据,通常有些类不能被可用的属性区分。粗糙集就是用来近似或粗略地定义这种类。
10、模糊集
模糊集理论将模糊逻辑引入数据挖掘分类系统,允许定义“模糊”域值或边界。模糊逻辑使用0.0和1.0之间的真值表示一个特定的值是一个给定成员的程度,而不是用类或集合的精确截断。模糊逻辑提供了在高抽象层处理的便利。
11、回归分析
回归分析分为线性回归、多元回归和非线性同归。在线性回归中,数据用直线建模,多元回归是线性回归的扩展,涉及多个预测变量。非线性回归是在基本线性模型上添加多项式项形成非线性同门模型。
12、差别分析
差别分析的目的是试图发现数据中的异常情况,如噪音数据,欺诈数据等异常数据,从而获得有用信息。
13、概念描述
概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别,生成一个类的特征性描述只涉及该类对象中所有对象的共性。
三、结束语
由于人们急切需要将存在于数据库和其他信息库中的数据转化为有用的知识,因而数据挖掘被认为是一门新兴的、非常重要的、具有广阔应用前景和富有挑战性的研究领域,并应起了众多学科(如数据库、人工智能、统计学、数据仓库、在线分析处理、专家系统、数据可视化、机器学习、信息检索、神经网络、模式识别、高性能计算机等)研究者的广泛注意。作为一门新兴的学科,数据挖掘是由上述学科相互交叉、相互融合而形成的。随着数据挖掘的进一步发展,它必然会带给用户更大的利益。

Ⅵ 我正在做用遗传算法的图像聚类 IM=imread('2.jpg');%读入图像 IM=IM(:,:,1); 第二行代码是什么意思啊

IM读入的图像,应该是RGB图像
IM(:,:,1)表示只取IM的R值,IM(:,:,2)就表示取IM的G值,类推到B

Ⅶ 数据挖掘,聚类分析算法研究的目的和意义是什么!

图像分割
基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通集合。常用方法有:
1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;
2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;
3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。

具体的阈值分割:

阈值分割方法分为以下3类:
1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。
2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。
3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。
全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:
1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。
2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。
3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。
全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。
参详《数字图像处理》工具:MATLAB或VC++

热点内容
如何申请i7服务器地址 发布:2025-01-23 04:42:15 浏览:845
浏览器内核源码 发布:2025-01-23 04:41:34 浏览:659
精英版缤智少了些什么配置 发布:2025-01-23 04:41:30 浏览:356
编写c编译器 发布:2025-01-23 04:41:30 浏览:968
可以解压war包的编译软件 发布:2025-01-23 04:38:28 浏览:986
vivo手机有编译功能吗 发布:2025-01-23 04:31:57 浏览:568
自己架设云手机服务器 发布:2025-01-23 04:31:17 浏览:949
gcc命令行编译的方法 发布:2025-01-23 04:30:31 浏览:397
我的云服务器地址近期价格 发布:2025-01-23 04:29:05 浏览:625
js预览上传图片 发布:2025-01-23 04:28:54 浏览:407