当前位置:首页 » 操作系统 » bp算法的缺点

bp算法的缺点

发布时间: 2022-07-09 14:47:00

‘壹’ BP算法及其改进

传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。

用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。

这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。

本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。

矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。

本文最后指出了新算法的优点,并指出了有待改进的地方。

关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

传统的BP算法及其改进算法的一个很大缺点是:由于其误差目标函数对于待学习的连接权值来说非凸的,存在局部最小点,对网络进行训练时,这些算法的权值一旦落入权值空间的局部最小点就很难跳出,因而无法达到全局最小点(即最优点)而使得网络训练失败。针对这些缺陷,根据凸函数及其共轭的性质,利用Fenchel不等式,使用约束优化理论中的罚函数方法构造出了带有惩罚项的新误差目标函数。

用新的目标函数对前馈神经网络进行优化训练时,隐层输出也作为被优化变量。这个目标函数的主要特点有:
1.固定隐层输出,该目标函数对连接权值来说是凸的;固定连接权值,对隐层输出来说是凸的。这样在对连接权值和隐层输出进行交替优化时,它们所面对的目标函数都是凸函数,不存在局部最小的问题,算法对于初始权值的敏感性降低;
2.由于惩罚因子是逐渐增大的,使得权值的搜索空间变得比较大,从而对于大规模的网络也能够训练,在一定程度上降低了训练过程陷入局部最小的可能性。

这些特性能够在很大程度上有效地克服以往前馈网络的训练算法易于陷入局部最小而使网络训练失败的重大缺陷,也为利用凸优化理论研究前馈神经网络的学习算法开创了一个新思路。在网络训练时,可以对连接权值和隐层输出进行交替优化。把这种新算法应用到前馈神经网络训练学习中,在学习速度、泛化能力、网络训练成功率等多方面均优于传统训练算法,如经典的BP算法。数值试验也表明了这一新算法的有效性。

本文通过典型的BP算法与新算法的比较,得到了二者之间相互关系的初步结论。从理论上证明了当惩罚因子趋于正无穷大时新算法就是BP算法,并且用数值试验说明了惩罚因子在网络训练算法中的作用和意义。对于三层前馈神经网络来说,惩罚因子较小时,隐层神经元局部梯度的可变范围大,有利于连接权值的更新;惩罚因子较大时,隐层神经元局部梯度的可变范围小,不利于连接权值的更新,但能提高网络训练精度。这说明了在网络训练过程中惩罚因子为何从小到大变化的原因,也说明了新算法的可行性而BP算法则时有无法更新连接权值的重大缺陷。

矿体预测在矿床地质中占有重要地位,由于输入样本量大,用以往前馈网络算法进行矿体预测效果不佳。本文把前馈网络新算法应用到矿体预测中,取得了良好的预期效果。

本文最后指出了新算法的优点,并指出了有待改进的地方。

关键词:前馈神经网络,凸优化理论,训练算法,矿体预测,应用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks’ training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers’ outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers’ outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers’ outputs. Thus, when connecting weight values and hidden layers’ outputs are optimized alternately, the new target function is convex in them, doesn’t exist local minimum point, and the algorithm’s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values ’ searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks’ training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks’ learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs’ variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs’ variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm’s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms’ effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm’s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

BP算法及其改进

2.1 BP算法步骤

1°随机抽取初始权值ω0;

2°输入学习样本对(Xp,Yp),学习速率η,误差水平ε;

3°依次计算各层结点输出opi,opj,opk;

4°修正权值ωk+1=ωk+ηpk,其中pk=,ωk为第k次迭代权变量;

5°若误差E<ε停止,否则转3°。

2.2 最优步长ηk的确定

在上面的算法中,学习速率η实质上是一个沿负梯度方向的步长因子,在每一次迭代中如何确定一个最优步长ηk,使其误差值下降最快,则是典型的一维搜索问题,即E(ωk+ηkpk)=(ωk+ηpk)。令Φ(η)=E(ωk+ηpk),则Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk。若ηk为(η)的极小值点,则Φ′(ηk)=0,即E(ωk+ηpk)Tpk=-pTk+1pk=0。确定ηk的算法步骤如下

1°给定η0=0,h=0.01,ε0=0.00001;

2°计算Φ′(η0),若Φ′(η0)=0,则令ηk=η0,停止计算;

3°令h=2h, η1=η0+h;

4°计算Φ′(η1),若Φ′(η1)=0,则令ηk=η1,停止计算;

若Φ′(η1)>0,则令a=η0,b=η1;若Φ′(η1)<0,则令η0=η1,转3°;

5°计算Φ′(a),若Φ′(a)=0,则ηk=a,停止计算;

6°计算Φ′(b),若Φ′(b)=0,则ηk=b,停止计算;

7°计算Φ′(a+b/2),若Φ′(a+b/2)=0,则ηk=a+b/2,停止计算;

若Φ′(a+b/2)<0,则令a=a+b/2;若Φ′(a+b/2)>0,则令b=a+b/2

8°若|a-b|<ε0,则令,ηk=a+b/2,停止计算,否则转7°。

2.3 改进BP算法的特点分析

在上述改进的BP算法中,对学习速率η的选取不再由用户自己确定,而是在每次迭代过程中让计算机自动寻找最优步长ηk。而确定ηk的算法中,首先给定η0=0,由定义Φ(η)=E(ωk+ηpk)知,Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk,即Φ′(η0)=-pTkpk≤0。若Φ′(η0)=0,则表明此时下降方向pk为零向量,也即已达到局部极值点,否则必有Φ′(η0)<0,而对于一维函数Φ(η)的性质可知,Φ′(η0)<0则在η0=0的局部范围内函数为减函数。故在每一次迭代过程中给η0赋初值0是合理的。

改进后的BP算法与原BP算法相比有两处变化,即步骤2°中不需给定学习速率η的值;另外在每一次修正权值之前,即步骤4°前已计算出最优步长ηk。

‘贰’ BP神经网络的核心问题是什么其优缺点有哪些

人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最着名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.

  • 多层前向BP网络的优点:

  • 网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。这使得它特别适合于求解内部机制复杂的问题;

  • 网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;

  • 网络具有一定的推广、概括能力。

  • 多层前向BP网络的问题:

  • 从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;

  • 网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。

  • 难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;

  • 网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。因此,应用中如何选择合适的网络结构是一个重要的问题;

  • 新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;

  • 网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。此时,网络学习了过多的样本细节,而不能反映样本内含的规律

  • 由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;

  • 存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;

  • 为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。

‘叁’ 多层感知器训练样本过多,预测不准,训练样本小则训练精度好!

文档介绍:
多层感知器学习算法研究
中文摘要
多层感知器是一种单向传播的多层前馈网络模型,由于具有高度的非线性映射能 力,是目前神经网络研究与应用中最基本的网络模型之一,广泛应用于模式识别、图 像处理、函数逼近、优化计算、最优预测和自适应控制等领域。而多层感知器采用的 是BP算法。BP算法的收敛速度慢是个固有的缺点,因为它是建立在基于只具有局 部搜索能力的梯度法之上的,是只具有局部搜索能力的方法,若用于多个极小点的目 标函数时,是无法避免陷入局部极小和速度慢的缺点的。因此,对BP算法的研究一 直以来都是非常重要的课题。
毕业设计课题旨在对多层感知器的学习算法进行研究,并提出一种新的学习算 法。由于BPWE (权值外推BP)算法和TBP (三项BP)算法都是基于权值调整的改 进算法,而考虑将TBP算法中的均衡因子融入到BPWE算法中,从而使后者对权值 的调整由原来的两项增加为三项,从而提出一种新的学习算法TWEBP算法。为了 验证本算法的优点,采用了三个例子,分别对异或问题、三分类问题和函数逼近问题 进行了实验,发现其收敛速度和逃离局部极小点的能力都优于传统算法。

‘肆’ bp神经网络对输入数据和输出数据有什么要求

p神经网络的输入数据越多越好,输出数据需要反映网络的联想记忆和预测能力。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。BP网络具有高度非线性和较强的泛化能力,但也存在收敛速度慢、迭代步数多、易于陷入局部极小和全局搜索能力差等缺点。

(4)bp算法的缺点扩展阅读:

BP算法主要思想是:输入学习样本,使用反向传播算法对网络的权值和偏差进行反复的调整训练,使输出的向量与期望向量尽可能地接近,当网络输出层的误差平方和小于指定的误差时训练完成,保存网络的权值和偏差。

1、初始化,随机给定各连接权及阀值。

2、由给定的输入输出模式对计算隐层、输出层各单元输出

3、计算新的连接权及阀值,计算公式如下:

4、选取下一个输入模式对返回第2步反复训练直到网络设输出误差达到要求结束训练。

‘伍’ BP学习算法是什么类型的学习算法它主要有哪些不足

BP算法是由学习过程由信号的正向传播与误差的反向传播两个过程组成。由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。

虽然BP算法得到广泛的应用,但它也存在不足,其主要表现在训练过程不确定上,具体如下。

1,训练时间较长。对于某些特殊的问题,运行时间可能需要几个小时甚至更长,这主要是因为学习率太小所致,可以采用自适应的学习率加以改进。

2,完全不能训练。训练时由于权值调整过大使激活函数达到饱和,从而使网络权值的调节几乎停滞。为避免这种情况,一是选取较小的初始权值,二是采用较小的学习率。

3,易陷入局部极小值。BP算法可以使网络权值收敛到一个最终解,但它并不能保证所求为误差超平面的全局最优解,也可能是一个局部极小值。

这主要是因为BP算法所采用的是梯度下降法,训练是从某一起始点开始沿误差函数的斜面逐渐达到误差的最小值,故不同的起始点可能导致不同的极小值产生,即得到不同的最优解。如果训练结果未达到预定精度,常常采用多层网络和较多的神经元,以使训练结果的精度进一步提高,但与此同时也增加了网络的复杂性与训练时间。

4,“喜新厌旧”。训练过程中,学习新样本时有遗忘旧样本的趋势。

(5)bp算法的缺点扩展阅读:

BP算法最早由Werbos于1974年提出,1985年Rumelhart等人发展了该理论。BP网络采用有指导的学习方式,其学习包括以下4个过程。

1,组成输入模式由输入层经过隐含层向输出层的“模式顺传播”过程。

2,网络的期望输出与实际输出之差的误差信号由输出层经过隐含层逐层休整连接权的“误差逆传播”过程。

3,由“模式顺传播”与“误差逆传播”的反复进行的网络“记忆训练”过程。

4,网络趋向收敛即网络的总体误差趋向极小值的“学习收敛”过程。

‘陆’ 简要说明前馈神经网络的BP算法学习过程,并指出其具有什么缺点及其原因

计算步骤
1.确定最大误差和最大学习次数。
2.计算当前输入下的输出。
3.判断输出误差是否满足要求,满足则退出,不满足则开始学习。
4.计算广义误差,连接权系数更新。
6.次数加1,继续迭代计算直到满足要求。
缺点:
1.计算速度慢(计算量大,学习算法不成熟,不同的算法针对不同的问题收敛才快些)
2.输入信号与训练信号相差加大时,可能导致结果完全错误(不同的区域可能有不同的极值)

‘柒’ RBF神经网络的缺点!

1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP网络的结构要比RBF 网络简单。2. RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。但是在训练样本增多时, RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。3. RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。4. 他们的结构是完全不一样的。BP是通过不断的调整神经元的权值来逼近最小误差的。其方法一般是梯度下降。RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。5. bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。

热点内容
冒险岛按键精灵脚本下载 发布:2025-01-23 19:46:50 浏览:751
安卓访问共享需要开通什么服务 发布:2025-01-23 19:43:01 浏览:518
vs2015c语言调试 发布:2025-01-23 19:42:47 浏览:142
山西认证服务器连接不上云服务器 发布:2025-01-23 19:38:26 浏览:442
linux中断驱动 发布:2025-01-23 19:34:07 浏览:757
金佰鑫密码锁的设置键在哪里 发布:2025-01-23 19:34:07 浏览:933
出数据库 发布:2025-01-23 19:33:27 浏览:273
压缩天然气运输车价格 发布:2025-01-23 19:31:46 浏览:938
c语言if函数用法 发布:2025-01-23 19:17:28 浏览:626
java多线程练习题 发布:2025-01-23 19:01:27 浏览:102