scull源码
1. 如何系统的学习linux驱动开发
在学习之前一直对驱动开发非常的陌生,感觉有点神秘。不知道驱动开发和普通的程序开发究竟有什么不同;它的基本框架又是什么样的;他的开发环境有什么特殊的地方;以及怎么写编写一个简单的字符设备驱动前编译加载,下面我就对这些问题一个一个的介绍。
一、驱动的基本框架
1.那么究竟什么是驱动程序,它有什么用呢:
l驱动是硬件设备与应用程序之间的一个中间软件层
l它使得某个特定硬件能够响应一个定义良好的内部编程接口,同时完全隐蔽了设备的工作细节
l用户通过一组与具体设备无关的标准化的调用来完成相应的操作
l驱动程序的任务就是把这些标准化的系统调用映射到具体设备对于实际硬件的特定操作上
l驱动程序是内核的一部分,可以使用中断、DMA等操作
l驱动程序在用户态和内核态之间传递数据
2.Linux驱动的基本框架
3.Linux下设备驱动程序的一般可以分为以下三类
1)字符设备
a)所有能够象字节流一样访问的设备都通过字符设备来实现
b)它们被映射为文件系统中的节点,通常在/dev/目录下面
c)一般要包含open read write close等系统调用的实现
2)块设备
d)通常是指诸如磁盘、内存、Flash等可以容纳文件系统的存储设备。
e)块设备也是通过文件系统来访问,与字符设备的区别是:内核管理数据的方式不同
f)它允许象字符设备一样以字节流的方式来访问,也可一次传递任意多的字节。
3)网络接口设备
g)通常它指的是硬件设备,但有时也可能是一个软件设备(如回环接口loopback),它们由内核中网络子系统驱动,负责发送和接收数据包。
h)它们的数据传送往往不是面向流的,因此很难将它们映射到一个文件系统的节点上。
二、怎么搭建一个驱动的开发环境
因为驱动是要编译进内核,在启动内核时就会驱动此硬件设备;或者编译生成一个.o文件,当应用程序需要时再动态加载进内核空间运行。因此编译任何一个驱动程序都要链接到内核的源码树。所以搭建环境的第一步当然是建内核源码树
1.怎么建内核源码树
a)首先看你的系统有没有源码树,在你的/lib/ moles目录下会有内核信息,比如我当前的系统里有两个版本:
#ls /lib/ moles
2.6.15-rc72.6.21-1.3194.fc7
查看其源码位置:
## ll /lib/moles/2.6.15-rc7/build
lrwxrwxrwx 1 root root 27 2008-04-28 19:19 /lib/moles/2.6.15-rc7/build -> /root/xkli/linux-2.6.15-rc7
发现build是一个链接文件,其所对应的目录就是源码树的目录。但现在这里目标目录已经是无效的了。所以得自己重新下载
b)下载并编译源码树
有很多网站上可以下载,但官方网址是:
http://www.kernel.org/pub/linux/kernel/v2.6/
下载完后当然就是解压编译了
# tar –xzvf linux-2.6.16.54.tar.gz
#cd linux-2.6.16.54
## make menuconfig (配置内核各选项,如果没有配置就无法下一步编译,这里可以不要改任何东西)
#make
…
如果编译没有出错。那么恭喜你。你的开发环境已经搭建好了
三、了解驱动的基本知识
1.设备号
1)什么是设备号呢?我们进系统根据现有的设备来讲解就清楚了:
#ls -l /dev/
crwxrwxrwx 1 root root1,3 2009-05-11 16:36 null
crw------- 1 root root4,0 2009-05-11 16:35 systty
crw-rw-rw- 1 root tty5,0 2009-05-11 16:36 tty
crw-rw---- 1 root tty4,0 2009-05-11 16:35 tty0
在日期前面的两个数(如第一列就是1,3)就是表示的设备号,第一个是主设备号,第二个是从设备号
2)设备号有什么用呢?
l传统上,主编号标识设备相连的驱动.例如, /dev/null和/dev/zero都由驱动1来管理,而虚拟控制台和串口终端都由驱动4管理
l次编号被内核用来决定引用哪个设备.依据你的驱动是如何编写的自己区别
3)设备号结构类型以及申请方式
l在内核中, dev_t类型(在中定义)用来持有设备编号,对于2.6.0内核, dev_t是32位的量, 12位用作主编号, 20位用作次编号.
l能获得一个dev_t的主或者次编号方式:
MAJOR(dev_t dev); //主要
MINOR(dev_t dev);//次要
l但是如果你有主次编号,需要将其转换为一个dev_t,使用: MKDEV(int major, int minor);
4)怎么在程序中分配和释放设备号
在建立一个字符驱动时需要做的第一件事是获取一个或多个设备编号来使用.可以达到此功能的函数有两个:
l一个是你自己事先知道设备号的
register_chrdev_region,在中声明:
int register_chrdev_region(dev_t first, unsigned int count, char *name);
first是你要分配的起始设备编号. first的次编号部分常常是0,count是你请求的连续设备编号的总数. name是应当连接到这个编号范围的设备的名子;它会出现在/proc/devices和sysfs中.
l第二个是动态动态分配设备编号
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int count, char *name);
使用这个函数, dev是一个只输出的参数,它在函数成功完成时持有你的分配范围的第一个数. fisetminor应当是请求的第一个要用的次编号;它常常是0. count和name参数如同给request_chrdev_region的一样.
5)设备编号的释放使用
不管你是采用哪些方式分配的设备号。使用之后肯定是要释放的,其方式如下:
void unregister_chrdev_region(dev_t first, unsigned int count);
6)
2.驱动程序的二个最重要数据结构
1)file_operation
倒如字符设备scull的一般定义如下:
struct file_operations scull_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_open,
.release = scull_release,
};
file_operation也称为设备驱动程序接口
定义在,是一个函数指针的集合.每个打开文件(内部用一个file结构来代表)与它自身的函数集合相关连(通过包含一个称为f_op的成员,它指向一个file_operations结构).这些操作大部分负责实现系统调用,因此,命名为open, read,等等
2)File
定义位于include/fs.h
struct file结构与驱动相关的成员
lmode_t f_mode标识文件的读写权限
lloff_t f_pos当前读写位置
lunsigned int_f_flag文件标志,主要进行阻塞/非阻塞型操作时检查
lstruct file_operation * f_op文件操作的结构指针
lvoid * private_data驱动程序一般将它指向已经分配的数据
lstruct dentry* f_dentry文件对应的目录项结构
3.字符设备注册
1)内核在内部使用类型struct cdev的结构来代表字符设备.在内核调用你的设备操作前,必须编写分配并注册一个或几个这些结构.有2种方法来分配和初始化一个这些结构.
l如果你想在运行时获得一个独立的cdev结构,可以这样使用:
struct cdev *my_cdev = cdev_alloc();
my_cdev->ops = &my_fops;
l如果想将cdev结构嵌入一个你自己的设备特定的结构;你应当初始化你已经分配的结构,使用:
void cdev_init(struct cdev *cdev, struct file_operations *fops);
2)一旦cdev结构建立,最后的步骤是把它告诉内核,调用:
int cdev_add(struct cdev *dev, dev_t num, unsigned int count);
说明:dev是cdev结构, num是这个设备响应的第一个设备号, count是应当关联到设备的设备号的数目.常常count是1,但是有多个设备号对应于一个特定的设备的情形.
3)为从系统去除一个字符设备,调用:
void cdev_del(struct cdev *dev);
4.open和release
2. 怎么将ebOr热水器调高
驱动程序开发的一个重大难点就是不易调试。本文目的就是介绍驱动开发中常用的几种直接和间接的调试手段,它们是:
1、利用printk
2、查看OOP消息
3、利用strace
4、利用内核内置的hacking选项
5、利用ioctl方法
6、利用/proc 文件系统
7、使用kgdb
前两种如下:
一、利用printk
这是驱动开发中最朴实无华,同时也是最常用和有效的手段。scull驱动的main.c第338行如下,就是使用printk进行调试的例子,这样的例子相信大家在阅读驱动源码时随处可见。
338 // printk(KERN_ALERT "wakeup by signal in process %d\n", current->pid);
printk的功能与我们经常在应用程序中使用的printf是一样的,不同之处在于printk可以在打印字符串前面加上内核定义的宏,例如上面例子中的KERN_ALERT(注意:宏与字符串之间没有逗号)。
#define KERN_EMERG "<0>"
3. 新手求教LINUX下的原子操作该怎么写
linux中关于原子操作
2016年08月02日
- 一.整型原子操作定义于#include<asm/atomic.h>分为 定义,获取,加减,测试,返回。void atomic_set(atomic_t *v,int i); //设置原子变量v的值为iatomic_t v = ATOMIC_INIT(0); //定义原子变量v,并初始化为0;atomic_read(atomic_t* v); //返回原子变量v的值;void atomic_add(int i, atomic_t* v); //原子变量v增加i;void atomic_sub(int i, atomic_t* v); void atomic_inc(atomic_t* v); //原子变量增加1;void atomic_dec(atomic_t* v);int atomic_inc_and_test(atomic_t* v); //先自增1,然后测试其值是否为0,若为0,则返回true,否则返回false;int atomic_dec_and_test(atomic_t* v); int atomic_sub_and_test(int i, atomic_t* v); //先减i,然后测试其值是否为0,若为0,则返回true,否则返回false;注意:只有自加,没有加操作int atomic_add_return(int i, atomic_t* v); //v的值加i后返回新的值;int atomic_sub_return(int i, atomic_t* v); int atomic_inc_return(atomic_t* v); //v的值自增1后返回新的值;int atomic_dec_return(atomic_t* v);二.位原子操作定义于#include<asm/bitops.h>分为 设置,清除,改变,测试void set_bit(int nr, volatile void* addr); //设置地址addr的第nr位,所谓设置位,就是把位写为1;void clear_bit(int nr, volatile void* addr); //清除地址addr的第nr位,所谓清除位,就是把位写为0;void change_bit(int nr, volatile void* addr); //把地址addr的第nr位反转;int test_bit(int nr, volatile void* addr); //返回地址addr的第nr位;int test_and_set_bit(int nr, volatile void* addr);//测试并设置位;若addr的第nr位非0,则返回true; 若addr的第nr位为0,则返回false;int test_and_clear_bit(int nr, volatile void* addr);//测试并清除位;int test_and_change_bit(int nr, volatile void* addr);//测试并反转位;上述操作等同于先执行test_bit(nr,voidaddr)然后在执行xxx_bit(nr,voidaddr)
- 举个简单例子:为了实现设备只能被一个进程打开,从而避免竞态的出现static atomic_t scull_available = ATOMIC_INIT(1);//init atomic在scull_open 函数和scull_close函数中:int scull_open(struct inode *inode, struct file *filp){ struct scull_dev *dev; // device information dev = container_of(inode->i_cdev, struct scull_dev, cdev); filp->private_data = dev;// for other methods if(!atomic_dec_and_test(&scull_available)){ atomic_inc(&scull_available); return -EBUSY; } return 0; // success}int scull_release(struct inode *inode, struct file *filp){ atomic_inc(&scull_available); return 0;}
#if__LINUX_ARM_ARCH__>=6
......(通过ldrex/strex指令的汇编实现)
#else/*ARM_ARCH_6*/
#ifdef CONFIG_SMP
#errorSMPnotsupportedonpre-ARMv6 CPUs
#endif
......(通过关闭CPU中断的C语言实现)
#endif/*__LINUX_ARM_ARCH__*/
......
#ifndef CONFIG_GENERIC_ATOMIC64
......(通过ldrexd/strexd指令的汇编实现的64bit原子变量的访问)
#else/*!CONFIG_GENERIC_ATOMIC64*/
#include<asm-generic/atomic64.h>
#endif
#include<asm-generic/atomic-long.h>
/*
*ARMv6 UP 和 SMP 安全原子操作。 我们是用独占载入和
*独占存储来保证这些操作的原子性。我们可能会通过循环
*来保证成功更新变量。
*/
static inline void atomic_add(inti,atomic_t*v)
{
unsigned long tmp;
intresult;
__asm__ __volatile__("@ atomic_add "
"1: ldrex %0, [%3] "
" add %0, %0, %4 "
" strex %1, %0, [%3] "
" teq %1, #0 "
" bne 1b"
:"=&r"(result),"=&r"(tmp),"+Qo"(v->counter)
:"r"(&v->counter),"Ir"(i)
:"cc");
}
A:将该物理地址标记为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
B:标记此物理地址为CPU1独占访问,并清除CPU1对其他任何物理地址的任何独占访问标记。
C:再次标记此物理地址为CPU0独占访问,并清除CPU0对其他任何物理地址的任何独占访问标记。
D:已被标记为CPU0独占访问,进行存储并清除独占访问标记,并返回0(操作成功)。
E:没有标记为CPU1独占访问,不会进行存储,并返回1(操作失败)。
F:没有标记为CPU0独占访问,不会进行存储,并返回1(操作失败)。
原子操作:就是在执行某一操作时不被打断。
linux原子操作问题来源于中断、进程的抢占以及多核smp系统中程序的并发执行。
对于临界区的操作可以加锁来保证原子性,对于全局变量或静态变量操作则需要依赖于硬件平台的原子变量操作。
因此原子操作有两类:一类是各种临界区的锁,一类是操作原子变量的函数。
对于arm来说,单条汇编指令都是原子的,多核smp也是,因为有总线仲裁所以cpu可以单独占用总线直到指令结束,多核系统中的原子操作通常使用内存栅障(memory barrier)来实现,即一个CPU核在执行原子操作时,其他CPU核必须停止对内存操作或者不对指定的内存进行操作,这样才能避免数据竞争问题。但是对于load update store这个过程可能被中断、抢占,所以arm指令集有增加了ldrex/strex这样的实现load update store的原子指令。
但是linux种对于c/c++程序(一条c编译成多条汇编),由于上述提到的原因不能保证原子性,因此linux提供了一套函数来操作全局变量或静态变量。
假设原子变量的底层实现是由一个汇编指令实现的,这个原子性必然有保障。但是如果原子变量的实现是由多条指令组合而成的,那么对于SMP和中断的介入会不会有什么影响呢?我在看ARM的原子变量操作实现的时候,发现其是由多条汇编指令(ldrex/strex)实现的。在参考了别的书籍和资料后,发现大部分书中对这两条指令的描诉都是说他们是支持在SMP系统中实现多核共享内存的互斥访问。但在UP系统中使用,如果ldrex/strex和之间发生了中断,并在中断中也用ldrex/strex操作了同一个原子变量会不会有问题呢?就这个问题,我认真看了一下内核的ARM原子变量源码和ARM官方对于ldrex/strex的功能解释,总结如下:
一、ARM构架的原子变量实现结构
对于ARM构架的原子变量实现源码位于:arch/arm/include/asm/atomic.h
其主要的实现代码分为ARMv6以上(含v6)构架的实现和ARMv6版本以下的实现。
该文件的主要结构如下:
这样的安排是依据ARM核心指令集版本的实现来做的:
(1)在ARMv6以上(含v6)构架有了多核的CPU,为了在多核之间同步数据和控制并发,ARM在内存访问上增加了独占监测(Exclusive monitors)机制(一种简单的状态机),并增加了相关的ldrex/strex指令。请先阅读以下参考资料(关键在于理解local monitor和Global monitor):
1.2.2.Exclusive monitors
4.2.12.LDREX和STREX
(2)对于ARMv6以前的构架不可能有多核CPU,所以对于变量的原子访问只需要关闭本CPU中断即可保证原子性。
对于(2),非常好理解。
但是(1)情况,我还是要通过源码的分析才认同这种代码,以下我仅仅分析最具有代表性的atomic_add源码,其他的API原理都一样。如果读者还不熟悉C内嵌汇编的格式,请参考《ARM GCC内嵌汇编手册》
二、内核对于ARM构架的atomic_add源码分析
源码分析:
注意:根据内联汇编的语法,result、tmp、&v->counter对应的数据都放在了寄存器中操作。如果出现上下文切换,切换机制会做寄存器上下文保护。
(1)ldrex %0, [%3]
意思是将&v->counter指向的数据放入result中,并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是将result保存到&v->counter指向的内存中,此时Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4)teq %1, #0
测试strex是否成功(tmp == 0??)
(5)bne 1b
如果发现strex失败,从(1)再次执行。
通过上面的分析,可知关键在于strex的操作是否成功的判断上。而这个就归功于ARM的Exclusive monitors和ldrex/strex指令的机制。以下通过可能的情况分析ldrex/strex指令机制。(请阅读时参考4.2.12.LDREX和STREX)
1、UP系统或SMP系统中变量为非CPU间共享访问的情况
此情况下,仅有一个CPU可能访问变量,此时仅有Local monitor需要关注。
假设CPU执行到(2)的时候,来了一个中断,并在中断里使用ldrex/strex操作了同一个原子变量。则情况如下图所示:
虽然对于人来说,这种情况比较BT。但是在飞速运行的CPU来说,BT的事情随时都可能发生。
当然还有其他许多复杂的可能,也可以通过ldrex/strex指令的机制分析出来。从上面列举的分析中,我们可以看出:ldrex/strex可以保证在任何情况下(包括被中断)的访问原子性。所以内核中ARM构架中的原子操作是可以信任的。
4. 关于UBUNTU系统构造内核树的问题
我也遇到楼主同样的问题,我也是新手..希望有前辈能指导.
5. ioctl()函数的参数和作用
因为用户层定义它是个变参函数
ioctl (int __fd, unsigned long int __request, ...)
跟printf似的
6. 谁能提供scull源码下载或是免费下载网站也行
http://examples.oreilly.com/9780596005900/
这个是算得上是官方发布的了。
7. hp带库71e+磁带状态fair什么意思
驱动程序开发的一个重大难点就是不易调试。本文目的就是介绍驱动开发中常用的几种直接和间接的调试手段,它们是:
1、利用printk
2、查看OOP消息
3、利用strace
4、利用内核内置的hacking选项
5、利用ioctl方法
6、利用/proc 文件系统
7、使用kgdb
前两种如下
这是驱动开发中最朴实无华,同时也是最常用和有效的手段。scull驱动的main.c第338行如下,就是使用printk进行调试的例子,这样的例子相信大家在阅读驱动源码时随处可见。
338 // printk(KERN_ALERT "wakeup by signal in process %d\n", current->pid);
printk的功能与我们经常在应用程序中使用的printf是一样的,不同之处在于printk可以在打印字符串前面加上内核定义的宏,例如上面例子中的KERN_ALERT(注意:宏与字符串之间没有逗号)。
#define KERN_EMERG "<0>"
#define KERN_ALERT "<1>"
#define KERN_CRIT "<2>"
#define KERN_ERR "<3>"
#define KERN_WARNING "<4>"
#define KERN_NOTICE "<5>"
#define KERN_INFO "<6>"
#define KERN_DEBUG "<7>"
#define DEFAULT_CONSOLE_LOGLEVEL 7
8. 什么是linux 平台驱动开发
在学习之前一直对驱动开发非常的陌生,感觉有点神秘。不知道驱动开发和普通的程序开发究竟有什么不同;它的基本框架又是什么样的;他的开发环境有什么特殊的地方;以及怎么写编写一个简单的字符设备驱动前编译加载,下面我就对这些问题一个一个的介绍。
一、驱动的基本框架
1. 那么究竟什么是驱动程序,它有什么用呢:
l 驱动是硬件设备与应用程序之间的一个中间软件层
l 它使得某个特定硬件能够响应一个定义良好的内部编程接口,同时完全隐蔽了设备的工作细节
l 用户通过一组与具体设备无关的标准化的调用来完成相应的操作
l 驱动程序的任务就是把这些标准化的系统调用映射到具体设备对于实际硬件的特定操作上
l 驱动程序是内核的一部分,可以使用中断、DMA等操作
l 驱动程序在用户态和内核态之间传递数据
2. Linux驱动的基本框架
3. Linux下设备驱动程序的一般可以分为以下三类
1) 字符设备
a) 所有能够象字节流一样访问的设备都通过字符设备来实现
b) 它们被映射为文件系统中的节点,通常在/dev/目录下面
c) 一般要包含open read write close等系统调用的实现
2) 块设备
d) 通常是指诸如磁盘、内存、Flash等可以容纳文件系统的存储设备。
e) 块设备也是通过文件系统来访问,与字符设备的区别是:内核管理数据的方式不同
f) 它允许象字符设备一样以字节流的方式来访问,也可一次传递任意多的字节。
3) 网络接口设备
g) 通常它指的是硬件设备,但有时也可能是一个软件设备(如回环接口loopback),它们由内核中网络子系统驱动,负责发送和接收数据包。
h) 它们的数据传送往往不是面向流的,因此很难将它们映射到一个文件系统的节点上。
二、怎么搭建一个驱动的开发环境
因为驱动是要编译进内核,在启动内核时就会驱动此硬件设备;或者编译生成一个.o文件, 当应用程序需要时再动态加载进内核空间运行。因此编译任何一个驱动程序都要链接到内核的源码树。所以搭建环境的第一步当然是建内核源码树
1. 怎么建内核源码树
a) 首先看你的系统有没有源码树,在你的/lib/ moles目录下会有内核信息,比如我当前的系统里有两个版本:
#ls /lib/ moles
2.6.15-rc7 2.6.21-1.3194.fc7
查看其源码位置:
## ll /lib/moles/2.6.15-rc7/build
lrwxrwxrwx 1 root root 27 2008-04-28 19:19 /lib/moles/2.6.15-rc7/build -> /root/xkli/linux-2.6.15-rc7
发现build是一个链接文件,其所对应的目录就是源码树的目录。但现在这里目标目录已经是无效的了。所以得自己重新下载
b)下载并编译源码树
有很多网站上可以下载,但官方网址是:
http://www.kernel.org/pub/linux/kernel/v2.6/
下载完后当然就是解压编译了
# tar –xzvf linux-2.6.16.54.tar.gz
#cd linux-2.6.16.54
## make menuconfig (配置内核各选项,如果没有配置就无法下一步编译,这里可以不要改任何东西)
#make
…
如果编译没有出错。那么恭喜你。你的开发环境已经搭建好了
三、了解驱动的基本知识
1. 设备号
1) 什么是设备号呢?我们进系统根据现有的设备来讲解就清楚了:
#ls -l /dev/
crwxrwxrwx 1 root root 1, 3 2009-05-11 16:36 null
crw------- 1 root root 4, 0 2009-05-11 16:35 systty
crw-rw-rw- 1 root tty 5, 0 2009-05-11 16:36 tty
crw-rw---- 1 root tty 4, 0 2009-05-11 16:35 tty0
在日期前面的两个数(如第一列就是1,3)就是表示的设备号,第一个是主设备号,第二个是从设备号
2) 设备号有什么用呢?
l 传统上, 主编号标识设备相连的驱动. 例如, /dev/null 和 /dev/zero 都由驱动 1 来管理, 而虚拟控制台和串口终端都由驱动 4 管理
l 次编号被内核用来决定引用哪个设备. 依据你的驱动是如何编写的自己区别
3) 设备号结构类型以及申请方式
l 在内核中, dev_t 类型(在 中定义)用来持有设备编号, 对于 2.6.0 内核, dev_t 是 32 位的量, 12 位用作主编号, 20 位用作次编号.
l 能获得一个 dev_t 的主或者次编号方式:
MAJOR(dev_t dev); //主要
MINOR(dev_t dev);//次要
l 但是如果你有主次编号, 需要将其转换为一个 dev_t, 使用: MKDEV(int major, int minor);
4) 怎么在程序中分配和释放设备号
在建立一个字符驱动时需要做的第一件事是获取一个或多个设备编号来使用. 可以达到此功能的函数有两个:
l 一个是你自己事先知道设备号的
register_chrdev_region, 在 中声明:
int register_chrdev_region(dev_t first, unsigned int count, char *name);
first 是你要分配的起始设备编号. first 的次编号部分常常是 0,count 是你请求的连续设备编号的总数. name 是应当连接到这个编号范围的设备的名子; 它会出现在 /proc/devices 和 sysfs 中.
l 第二个是动态动态分配设备编号
int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, unsigned int count, char *name);
使用这个函数, dev 是一个只输出的参数, 它在函数成功完成时持有你的分配范围的第一个数. fisetminor 应当是请求的第一个要用的次编号; 它常常是 0. count 和 name 参数如同给 request_chrdev_region 的一样.
5) 设备编号的释放使用
不管你是采用哪些方式分配的设备号。使用之后肯定是要释放的,其方式如下:
void unregister_chrdev_region(dev_t first, unsigned int count);
6)
2. 驱动程序的二个最重要数据结构
1) file_operation
倒如字符设备scull的一般定义如下:
struct file_operations scull_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_open,
.release = scull_release,
};
file_operation也称为设备驱动程序接口
定义在 , 是一个函数指针的集合. 每个打开文件(内部用一个 file 结构来代表)与它自身的函数集合相关连( 通过包含一个称为 f_op 的成员, 它指向一个 file_operations 结构). 这些操作大部分负责实现系统调用, 因此, 命名为 open, read, 等等
2) File
定义位于include/fs.h
struct file结构与驱动相关的成员
l mode_t f_mode 标识文件的读写权限
l loff_t f_pos 当前读写位置
l unsigned int_f_flag 文件标志,主要进行阻塞/非阻塞型操作时检查
l struct file_operation * f_op 文件操作的结构指针
l void * private_data 驱动程序一般将它指向已经分配的数据
l struct dentry* f_dentry 文件对应的目录项结构
3. 字符设备注册
1) 内核在内部使用类型 struct cdev 的结构来代表字符设备. 在内核调用你的设备操作前, 必须编写分配并注册一个或几个这些结构. 有 2 种方法来分配和初始化一个这些结构.
l 如果你想在运行时获得一个独立的 cdev 结构,可以这样使用:
struct cdev *my_cdev = cdev_alloc();
my_cdev->ops = &my_fops;
l 如果想将 cdev 结构嵌入一个你自己的设备特定的结构; 你应当初始化你已经分配的结构, 使用:
void cdev_init(struct cdev *cdev, struct file_operations *fops);
2) 一旦 cdev 结构建立, 最后的步骤是把它告诉内核, 调用:
int cdev_add(struct cdev *dev, dev_t num, unsigned int count);
说明:dev 是 cdev 结构, num 是这个设备响应的第一个设备号, count 是应当关联到设备的设备号的数目. 常常 count 是 1, 但是有多个设备号对应于一个特定的设备的情形.
3) 为从系统去除一个字符设备, 调用:
void cdev_del(struct cdev *dev);
4. open 和 release