当前位置:首页 » 操作系统 » 蚁群算法tsp问题

蚁群算法tsp问题

发布时间: 2022-07-08 14:50:22

‘壹’ MATLAB 蚁群算法求解TSP问题

n个城市,编号为1---n
for循环的次数是蚂蚁重复城市的次数,比如5个蚂蚁放到4个城市,需要重复两遍才能放完蚂蚁,每次循环产生n个1---n的随机数,相当于随机n个城市,产生城市序列
循环结束
Tabu一句表示将m个蚂蚁随机,每个蚂蚁放到前面产生的城市序列中,每个蚂蚁一个城市,需要m个,所以提取前面1:m个序列
'表示转置,没有多大用处,可能参与后面的计算方便。
我感觉如果m,n很大的话,你这样做会产生很大的浪费,计算很多的随机数,这样的话更好,一句就得:(如果变量Randpos后面没有用到的话,如果用到了,还要用你的程序)
Tabu=ceil(n*rand(1,m))'

‘贰’ 请教,采用蚁群算法求解TSP问题的oliver30最优路径

给你产考产考//蚁群算法关于简单的TSP问题求解//#include#include#include#include#include#defineM13//蚂蚁的数量#defineN144//城市的数量#defineR1000//迭代次数#defineIN1//初始化的信息素的量#defineMAX0x7fffffff//定义最大值structcoordinate{charcity[15];//城市名intx;//城市相对横坐标inty;//城市相对纵坐标}coords[N];doublegraph[N][N];//储存城市之间的距离的邻接矩阵,自己到自己记作MAXdoublephe[N][N];//每条路径上的信息素的量doubleadd[N][N];//代表相应路径上的信息素的增量doubleyita[N][N];//启发函数,yita[i][j]=1/graph[i][j]intvis[M][N];//标记已经走过的城市intmap[M][N];//map[K][N]记录第K只蚂蚁走的路线doublesolution[M];//记录某次循环中每只蚂蚁走的路线的距离intbestway[N];//记录最近的那条路线doublebestsolution=MAX;intNcMax;//代表迭代次数,理论上迭代次数越多所求的解更接近最优解,最具有说服力doublealpha,betra,rou,Q;voidInitialize();//信息初始化voidInputcoords(FILE*fp);//将文件中的坐标信息读入voidGreateGraph();//根据坐标信息建图doubleDistance(int*p);//计算蚂蚁所走的路线的总长度voidResult();//将结果保存到out.txt中voidInitialize(){alpha=2;betra=2;rou=0.7;Q=5000;NcMax=R;return;}voidInputcoords(FILE*fp){inti;intnumber;if(fp==NULL){printf("Sorry,thefileisnotexist\n");exit(1);}else{for(i=0;idrand)break;}vis[k][j]=1;//将走过的城市标记起来map[k][s]=j;//记录城市的顺序}s++;}memset(add,0,sizeof(add));for(k=0;k20)//设立一个上界,防止启发因子的作用被淹没phe[i][j]=20;}}memset(vis,0,sizeof(vis));memset(map,-1,sizeof(map));}Result();printf("Resultissavedinout.txt\n");return0;}

‘叁’ 蚁群算法做tsp问题与vrp的代码有什么不同

、旅行商问题(Traveling Salesman Problem, TSP) 这个问题字面上的理解是:有一个推销员,要到n个城市推销商品,他要找出一个包含所有n个城市的具有最短路程的环路。 TSP的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象...

‘肆’ 蚁群算法求解tsp问题能设置不限城市数量吗

如果不限制城市数量,需要找到自适应的算法参数。
如果可以找到自适应算法参数的情况下,或者说能得到与城市数量相关的参数设置函数,不限定城市数量应该也是可以的。

‘伍’ 蚁群算法解决TSP问题,最优解是多少,参数如何选择

概念:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值

其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序

应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内

引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。

具体参考http://ke..com/view/539346.htm
希望对你有帮助,谢谢。

‘陆’ 蚁群算法求解TSP问题遇到“索引超出矩阵维度。”的问题跪求大神能解答

你检查一下坐标矩阵是否出现了重复数值。比如你给的例子中C矩阵的第二个和第三个数值就重复了。

‘柒’ 在MATLAB中用蚁群算法求解TSP问题,在经典的代码中有Tabu(1,:)=R_best(NC-1,:)。不明白代码的目的。

正在做。我是这样理解的:
if NC >= 2
Tabu(1,:) = R_best(NC-1,:);
%把上一次迭代中最佳路线经历的城市放到本次Tabu的第一行
%相当是加了一个约束条件,如果本次迭代的情况不好,至少不会按照不好的最优解去更新信息素,让下次的情况更差
end

‘捌’ 蚁群算法求解TSP问题的源程序及简要说明

简单蚁群算法求解TSP的源程序(我帮你找的)

蚁群算法是新兴的仿生算法,最初是由意大利学者Dorigo M于1991年首次提出,由于具有较强的鲁棒性,优良的分布式计算机制和易于与其它方法结合等优点,成为人工智能领域的一个研究热点。本程序是实现简单的蚁群算法,TSP问题取的是att48,可从http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95获取,程序运行时间可能会比较长,在我的这台CPU 1.6G+内存256M的机器上运行时间大概是13分钟左右。我用的语言是MATLAB 7.1。此程序仅供学习所用,如有问题请反馈。谢谢。(注:程序没有计算最后一个城市回来起点城市的距离)

function [y,val]=QACS
tic
load att48 att48;
MAXIT=300; % 最大循环次数
NC=48; % 城市个数
tao=ones(48,48);% 初始时刻各边上的信息最为1
rho=0.2; % 挥发系数
alpha=1;
beta=2;
Q=100;
mant=20; % 蚂蚁数量
iter=0; % 记录迭代次数
for i=1:NC % 计算各城市间的距离
for j=1:NC
distance(i,j)=sqrt((att48(i,2)-att48(j,2))^2+(att48(i,3)-att48(j,3))^2);
end
end
bestroute=zeros(1,48); % 用来记录最优路径
routelength=inf; % 用来记录当前找到的最优路径长度
% for i=1:mant % 确定各蚂蚁初始的位置
% end
for ite=1:MAXIT
for ka=1:mant %考查第K只蚂蚁
deltatao=zeros(48,48); % 第K只蚂蚁移动前各边上的信息增量为零
[routek,lengthk]=travel(distance,tao,alpha,beta);
if lengthk<routelength % 找到一条更好的路径
routelength=lengthk;
bestroute=routek;
end
for i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量
deltatao(routek(i),routek(i+1))=deltatao(routek(i),routek(i+1))+Q/lengthk;
end
deltatao(routek(48),1)=deltatao(routek(48),1)+Q/lengthk;
end
for i=1:NC-1
for j=i+1:NC
if deltatao(i,j)==0
deltatao(i,j)=deltatao(j,i);
end
end
end
tao=(1-rho).*tao+deltatao;
end
y=bestroute;
val=routelength;
toc

function [y,val]=travel(distance,tao,alpha,beta) % 某只蚂蚁找到的某条路径
[m,n]=size(distance);
p=fix(m*rand)+1;
val=0; % 初始路径长度设为 0
tabuk=[p]; % 假设该蚂蚁都是从第 p 个城市出发的
for i=1:m-1
np=tabuk(length(tabuk)); % 蚂蚁当前所在的城市号
p_sum=0;
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
p_sum=p_sum+tao(np,j)^alpha*ada^beta;
end
end
cp=zeros(1,m); % 转移概率
for j=1:m
if isin(j,tabuk)
continue;
else
ada=1/distance(np,j);
cp(j)=tao(np,j)^alpha*ada^beta/p_sum;
end
end
NextCity=pchoice(cp);
tabuk=[tabuk,NextCity];
val=val+distance(np,NextCity);
end
y=tabuk;

function y=isin(x,A) % 判断数 x 是否在向量 A 中,如在返回 1 ,否则返回 0
y=0;
for i=1:length(A)
if A(i)==x
y=1;
break;
end
end

function y=pchoice(A)
a=rand;
tempA=zeros(1,length(A)+1);
for i=1:length(A)
tempA(i+1)=tempA(i)+A(i);
end
for i=2:length(tempA)
if a<=tempA(i)
y=i-1;
break;
end
end

‘玖’ 为什么基本蚁群算法求TSP问题,每次运行出来的都是一样的。。不应该是不一样的么。。。。

我的也是这样,我个人觉得应该是问题模型太简单

‘拾’ 遗传算法和蚁群算法在求解TSP问题上的对比分析

【原创】比遗传算法性能更好:蚁群算法TSP(旅行商问题)通用matlab程序
声明:本程序为本人原创,在研学论坛首次发表,本人保留一切权利,仅供学习交流用,如转载请注明原作者!

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:[email protected]
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================

%%第一步:变量初始化
n=size(C,1);%n表示问题的规模(城市个数)
D=zeros(n,n);%D表示完全图的赋权邻接矩阵
for i=1:n
for j=1:n
if i~=j
D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;
else
D(i,j)=eps;
end
D(j,i)=D(i,j);
end
end
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度

while NC<=NC_max%停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end

%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1

%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);
end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;

%%第六步:禁忌表清零
Tabu=zeros(m,n);
end

%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
DrawRoute(C,Shortest_Route)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)

function DrawRoute(C,R)
%%=========================================================================
%% DrawRoute.m
%% 画路线图的子函数
%%-------------------------------------------------------------------------
%% C Coordinate 节点坐标,由一个N×2的矩阵存储
%% R Route 路线
%%=========================================================================

N=length(R);
scatter(C(:,1),C(:,2));
hold on
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
hold on
for ii=2:N
plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)])
hold on
end

设置初始参数如下:
m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;
31城市坐标为:
1304 2312
3639 1315
4177 2244
3712 1399
3488 1535
3326 1556
3238 1229
4196 1004
4312 790
4386 570
3007 1970
2562 1756
2788 1491
2381 1676
1332 695
3715 1678
3918 2179
4061 2370
3780 2212
3676 2578
4029 2838
4263 2931
3429 1908
3507 2367
3394 2643
3439 3201
2935 3240
3140 3550
2545 2357
2778 2826
2370 2975

运行后得到15602的巡游路径,

热点内容
笔记本x17配置怎么选 发布:2025-01-24 05:05:53 浏览:7
python如何封装 发布:2025-01-24 05:05:46 浏览:843
csgo怎么连接服务器 发布:2025-01-24 05:05:45 浏览:322
408哪个配置合适 发布:2025-01-24 05:01:54 浏览:882
oraclesql删除重复 发布:2025-01-24 05:01:12 浏览:408
少儿编程排行 发布:2025-01-24 04:40:46 浏览:698
搭建服务器怎么使用 发布:2025-01-24 04:19:34 浏览:444
平行进口霸道哪些配置有用 发布:2025-01-24 04:19:32 浏览:874
ngram算法 发布:2025-01-24 04:03:16 浏览:659
迷宫游戏c语言 发布:2025-01-24 03:59:09 浏览:358