当前位置:首页 » 操作系统 » 滑动面反算法

滑动面反算法

发布时间: 2022-07-06 13:52:06

⑴ 遗传算法在数学上的应用

应用遗传算法搜索边坡最小安全系数的研究
陆峰 陈祖煜 李素梅
(中国水利水电科学研究院结构材料所)

提 要
本文简要介绍了滑坡滑裂面搜索问题和遗传算法,并试用遗传进化算法从边坡任意形状滑裂面组合中搜索最有可能的滑裂面,也就是使安全系数最小的滑裂面。作为实例,分析了遗传算法在天生桥二级电站首部枢纽进水口右岸滑坡分析中的应用。

关键词 边坡;安全系数;遗传算法;EMU程序。

1.前言

在应用条分法进行边坡稳定分析的过程中,从可能的滑裂面集合中确定相应最小安全系数的临界滑裂面是很关键的一步。这是一个确定安全系数这个泛函对滑裂面形状这个自变函数的极小值问题。由于实际情况的复杂性,求这一极小值的解析方法很难付诸实施。从实用角度出发,基于最优化原理发展起来的求边坡最小安全系数的方法是比较有效而且便于应用。这些方法有"穷举法"、"黄金分割法"、"鲍威尔法"等,但它们都只能应用于圆弧形滑裂面或圆弧-直线形(改良圆弧法)滑裂面的情形。对于比较符合岩质边坡的具有多个自由度的折线形滑裂面情形,孙君实用复形法取得较好的效果;陈祖煜提出了单纯形法,使最优化方法搜索边坡最危险滑裂面更加有效,且不会漏掉可能的最小值。单纯形法程序已在国内外多家工程、科研和教育单位得到应用,并不断随着应用工程案例数量的增加而不断完善[1]。单纯形法使最优化方法应用于岩质边坡稳定性分析的研究和应用前进了一大步。同为最优化方法,遗传算法是最近发展起来的一种仿生寻优算法。国内外已有一些学者试图将遗传算法应用于搜索安全系数最小的边坡滑裂面,以期获得更优的结果。文献[2]将此算法应用于基于圆弧滑裂面假定的任意形状坡面的非均质土坡情况,搜索的目标是使边坡安全系数最小的圆弧滑裂面圆心和半径。本文将在文献[1]和文献[2]的基础上,应用遗传算法搜索边坡安全系数最小的任意形状滑裂面,根据工程实践经验,主要是折线组合的滑裂面。 2.遗传算法及其应用于岩土工程的基础

如前所述,搜索边坡最危险滑裂面问题是安全系数对滑裂面形状的泛函极值问题。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。算法中称遗传的生物体为个体(indivial),个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代(new generation)。
遗传算法计算程序的流程可以表示如下[3]:
第一步 准备工作
(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。
(3)确定适应值函数f(x)。f(x)应为正值。
第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步 对每一染色体(串)计算其适应值fi,同时计算群体的总适应值 。
第四步 选择
计算每一串的选择概率Pi=fi/F及累计概率 。选择一般通过模拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。旋转M次即可选出M个串来。在计算机上实现的步骤是:产生[0,1]间随机数r,若r<q1,则第一串v1入选,否则选v2,使满足qi-1<r<qi(2≤i≤m)。可见适应值大的入选概率大。
第五步 交叉
(1) 对每串产生[0,1]间随机数,若r>pc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。
(2) 对每一对,产生[1,m]间的随机数以确定交叉的位置。
第六步 变异
如变异概率为Pm,则可能变异的位数的期望值为Pm ×m×M,每一位以等概率变异。具体为对每一串中的每一位产生[0,1]间的随机数r,若r<Pm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。
如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。
由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大,使选择起到"择优汰劣"的作用。交叉使染色体交换信息,结合选择规则,使优秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到产生确实有实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向的,它所使用的"按概率随机选择"方法是在有方向的搜索方法中的一种工具。正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的局部最小陷阱。遗传算法搜索最优结果的效果在数学上还没有严格的证明,但它的有效性已在许多专业的应用的得到体现。对于岩质边坡安全系数对滑裂面形状这样不可微的泛函极值问题,就目前的科学认识水平来讲,遗传算法不失为一种可以信赖的方法。 3.用遗传算法搜索安全系数最小的边坡任意形状滑裂面

在边坡(尤其是岩质边坡)最危险滑裂面搜索问题中,滑裂面的实际形状是很复杂的,起控制作用的是岩体的主要结构面和边坡的体型。从以往实际工程经验看,可以总结出岩质边坡滑裂面在顺滑方向上的剖面形状为折线,由岩体结构面和局部岩土材料的剪切破坏面连接而成。这样,搜索最危险滑裂面的问题就可以简化为从折线滑裂面组合中寻优的问题。本文用遗传进化算法解决这个问题。
(1) 定义遗传算法的目标函数
目标函数定义为边坡的安全系数,用安全系数的大小表示解的适应值。在边坡最危险滑裂面搜索问题中,解的安全系数越小,适应性能越好。
(2) 初始群体的确定
根据边坡的工程地质调查记录,根据经验初步拟定出一批滑裂面形状。如图1所示,滑裂面由点序列Ai(xi,yi)(i=1,?,N)表示。将点序列AI的坐标(xi,yi)依次排列成x1y1x2y2?xNyN的形式,经二进制编码形成一条染色体。对于拟定的滑裂面形状,其对应的安全系数用EMU程序[4]进行计算。
(3) 确定搜索范围
根据经验对每个点Ai,确定其坐标(xi,yi)的可能变化范围。在此范围内搜索导致最小安全系数的边坡滑裂面形状。
(4) 计算
将初始种群的所有拟定滑裂面形状(染色体)交给遗传算法程序进行计算。具体过程参见前文。

4.算例分析[4]

图1 天生桥二级电站首部枢纽进水口右岸滑坡示意图

选用天生桥二级电站首部枢纽进水口右岸滑坡作为算例,图1为其计算简图。滑坡高约30m,总方量为7000余m3,主要为第四系冲坡积物和施工堆碴。物理力学参数见表1。

表1 各土层物理力学性能指标
土层 密度(g/cm3) 抗剪强度指标
内摩擦角 凝聚力(kPa)
① 施工弃碴 1.85 21.8° 19.6
② 坡积土 1.85 21.8° 0.0
③ 砂土 1.85 21.8° 29.4
④ 砂质淤泥 1.85 20.8° 34.3
⑤ 河卵石、砾石 1.90 24.2° 0.0

滑坡发生前,靠近坡脚处因修建挡土墙被开挖而削弱边坡的整体稳定性,可以断定滑坡的滑裂面将从此经过。本例题还将忽略实际工程中坡顶张裂缝的影响。选用5个点的折线来模拟滑裂面形状,初步确定AiBiCiDiE(i=1~4)为可能的滑裂面。滑裂面上端点Ai的y坐标已受限制,下端点E的x、y坐标均已确定,故滑裂面只有7个自由度。按遗传算法的要求将滑裂面表示成如下形式:
xAxByBxCyCxDyD
四个模拟滑裂面的坐标和由EMU程序分析的安全系数列于表2。
表2 模拟滑裂面坐标及安全系数(坐标单位 m)
滑裂面 xA xB yB xC yC xD yD 安全系数
A1B1C1D1E 35.44 27.69 16.82 18.79 9.25 11.39 4.49 0.92
A2B2C2D2E 38.15 30.60 20.69 23.14 14.60 14.12 8.37 0.99
A3B3C3D3E 39.02 34.18 18.47 26.28 10.41 16.07 4.58 1.02
A3B3C4D4E 39.02 34.18 18.47 25.12 11.39 14.70 4.97 1. 03

限制搜索范围为每个自由度可在2.0m范围内变化。将4个排列好的数字串作为输入数据交给遗传算法程序进行编码、计算。经过大量运算,最后在最大种群代数(1000)群体中找到使安全系数最小的坐标数字串,经译码形成如下坐标:
(36.89,30.07)(33.25,21.52)(21.71,9.34)(13.54,5.07)(0.0,0.0)
即为图1中的ABCDE滑裂面。由遗传算法求出其相应的安全系数为0.90。滑裂面形式和安全系数都比较接近实际情况。

5.结语

遗传算法是一种高效的寻优算法,而且能有效地解决局部最小问题、非线性映射关系的表示、非线性映射关系不可微等普通优化算法常遇到的问题。算例的成果证明了这一特点。将遗传算法应用于滑坡滑裂面搜索问题,主要的工作是将工程问题简化成遗传算法需要的形式,简化时需详细参考地质调查资料和工程经验,务使简化的形式接近实际情况。对于简化的搜索样本,其安全系数的计算必须可靠,为此可应用一些比较成熟的计算程序,如EMU等。充分考虑实际工程地质情况和选取切合实际的搜索样本后,遗传算法程序必将能为滑坡搜索出最有可能的滑裂面。

参考文献

1 陈祖煜,邵长明,最优化方法在确定边坡最小安全系数方面的应用,岩土工程学报,Vol.10, No.4, 1998.7。
2 肖专文,张奇志,梁力,林韵梅,遗传进化算法在边坡稳定性分析中的应用,岩土工程学报,Vol.20, No.1, 1998.1。
3 周明,孙树栋,遗传算法原理及应用,国防工业出版社,1999.6。
4 陈祖煜,岩质高边坡稳定分析程序EMU,1995.5。

Research on Searching Least Factor of Safety of Slopes with Genetic Algorithm

Lu Feng Chen Zuyu Li Sumei
(Department of Structure and Material, IWHR)

Abstract

The problem of searching least factor of safety of slopes and the theory of Genetic Algorithm have been introced in this paper. This theory has been employed to solve this problem to find the most possible slide of slopes. As an example, the application of genetic algorithm on the Tianshengqiao Power Station Right Bank Slide has been presented.

Keywords: Slope, Factor of Safety, Genetic Algorithm, EMU Program.

⑵ 请教各位,在滑坡稳定性计算中,滑体容重,滑动面内聚力内摩擦角怎么确定,什么才比例可靠

实验法(野外原位试验、室内试验)、参数反算法、经验法

⑶ 岩土工程地基计算

一、地基承载力计算

地基的承载力应结合具体的工程条件选用合适的方法来确定。对建筑地基可用载荷试验、理论公式计算及其他原位试验等方法综合确定;对公路、铁路桥涵地基,可按规范承载力表方法或其他原位试验方法确定。

地基承载力理论公式是在一定的假定条件下通过弹性理论或弹塑性理论导出的解析解,包括地基临塑荷载公式、临界荷载公式、太沙基公式、斯肯普顿公式和汉森公式等。

(一)临塑荷载和临界荷载

在条形均布荷载作用下,根据地基中的应力分布和土的极限平衡条件,可以得到基底压力f与基础下塑性区开展的最大深度Zmax的关系:

深圳地质

分别令zmax=0和zmax=b/4(b为基础宽度),对应的基底压力即为临塑荷载fcr和临界荷载f1/4,即

深圳地质

式中:Nr、Mq、Nc称为承载力系数,它只与土的内摩擦角有关,其计算公式如下:

深圳地质

上式适用于条形基础,这些计算公式是从平面问题的条形均布荷载情况下导出的,若将它近似地用于矩形基础,其计算结果是偏于安全的。

《建筑地基基础设计规范》(GB50007)中的确定地基承载力特征值理论公式就是控制地基中塑性区开展深度达到地基宽度的1/4时所对应的荷载值:当偏心距(e)小于等于0.033倍基础底面宽度时,根据土的抗剪强度指标确定地基承载力特征值可按下式计算,并应满足变形要求:

深圳地质

式中:fa为由土的抗剪强度指标确定的地基承载力特征值;b为基础底面宽度,大于6 m时按6 m取值,对于砂土小于3m时按3m取值;Ck为基底下一倍短边宽深度内的土的黏聚力标准值;Mb、Md、Mc为承载力系数,对应于式(2.3.2-2)的Nr、Nq、Nc系数,其中ψ用ψk代替,为基底下一倍短边宽深度内的内摩擦角标准值;γm为基础底面以上土的加权平均重度,地下水位以下取浮重度;γ为基础底面以下土的重度,地下水位以下取浮重度。

(二)按极限状态计算

1.Prandtl、Busiman、Terzaghi极限承载力公式

极限承载力公式是Prandt1于1921年最先提出的,该公式基本假定是把土体作为刚性体,在剪切破坏以前不显示任何变形,破坏以后则在恒值应力下产生塑流。按条形基础进行计算,计算时作了简化:①略去了基底以上土的抗剪强度;②略去了上覆土层与基础之间的摩擦力,及上覆土层与持力层之间的摩擦力;③与基础宽度b相比,基础的长度是很大的。

L.Prandtl(1921年)和R eissner(1924年)得出的极限承载力公式是:

深圳地质

式中:fu为极限承载力;N d、N c为承载力系数,按下式确定:

深圳地质

A.S.Buisman(1940年)和Terzaghi(1943年)对上式作了补充,提出如下公式:

深圳地质

式中:Nb为承载力系数,按下式确定:

深圳地质

E.E.DeBeer(1967年)和A.S.Vesic(1970年)提出了形状修正系数,对上式又作了补充,形成了目前国内外常用的极限承载力修正公式。

深圳地质

式中:ζc、ζd、ζb为基础形状系数,按表2-3-4。其余符号意义同前。

表2-3-4 基础形状系数

2.Skempton极限承载力公式

对于饱和软黏土地基土(ψ=0),斯开普顿(A.W.Skempton,1952年)根据极限平衡状态下各滑动体的极限平衡条件,导出其地基极限承载力的计算公式为:

深圳地质

式(2.3.2-10)为式(2.3.2-7)的特例。《公路桥涵地基与基础设计规范》(JTJ024-85)采用了斯开普顿公式:软土地基容许承载力[σ]按下式计算,同时须进行变形验算:

深圳地质

式中:K为安全系数,可视软土灵敏度及基础长宽比等因素,取K=1.5~2.5;CM为不排水抗剪强度,可用不固结不排水三轴压缩试验、十字板剪试验及无侧限抗压强度试验等确定;kp为修正系数,;Q为荷载的水平分力。

3.考虑其他因素影响时的极限承载力计算公式

Prandtl和Terzaghi等的极限承载力公式,都是适用于中心竖向荷载作用时的条形基础,同时不考虑基底以上土的抗剪强度的作用。若基础上的荷载是倾斜的或有偏心,基础的埋置深度较深,计算时需要考虑基底以上土的抗剪强度影响时,地基承载力可采用汉森公式。

汉森(B.Hanson,1961,1970)提出的在中心倾斜荷载作用下,不同的基础形状及不同埋置深度时的极限承载力计算公式如下:

深圳地质

式中:承载力系数Nq、Nc与Prandtl公式中的承载力系数Nd、Mc相同。Nr值按下式计算:

深圳地质

iq、ic、ir为荷载倾斜系数;Sq、Sc、sr为基础形状系数;dq、dc、dr为深度系数。

我国交通部《港口工程地基规范》(JTJ250-98)即采用了汉森公式。

二、地基沉降计算

地基沉降计算采用分层总和法计算,不同的行业规定有不同的修正系数。

(一)地基沉降计算方法

1.采用e-p曲线计算

采用e-p曲线时应按下式计算:

图2-3-1 e-p压缩曲线

深圳地质

式中:n为地基分层层数;e0i为第i层土中点自重应力所对应的孔隙比;e1i为第i层土中点自重应力与附加应力之和所对应的孔隙比;Δhi为第i层土的厚度(图2-3-1)。

2.采用e-lgp曲线计算

采用e-1gp曲线时应按下列公式计算:

(1)正常固结、欠固结条件下

深圳地质

式中:Cci为土层的压缩指数;P0i为第i层土中点的自重应力;e0i为第i层土中点的初始孔隙比(对应于Pci时);pci为第i层土中点的前期固结压力,正常固结时Pci=P0i;Δpi为第i层土中点的附加应力。

(2)超固结条件下(图2-3-2)

深圳地质

利用原始压缩曲线和原始再压缩曲线分别确定土的压缩指数Cc和回弹指数Cs,对有效附加应力Δp>pc-p0的土层,其沉降量按下式计算:

深圳地质

对于Δp≤Pc-p0的土层,其沉降量按下式计算:

深圳地质

式中,C si为土层的回弹指数。

3.采用压缩模量计算

图2-3-2 超固结土计算沉降

对均质土或复合地基,主固结沉降Sc也可按地基压缩模量进行计算,即

深圳地质

式中:Esi为第i层土或复合地基的压缩模量。

4.软土次固结沉降计算

次固结沉降是在土骨架上的有效应力基本上保持不变的条件下,地基随时间的增长而发生的沉降,可按从主固结完成后开始,由时间-压缩曲线的斜率近似地求得次固结沉降。可参考下式计算:

深圳地质

式中:Cai为第i层土的次固结系数,为e-1gp曲线在主固结完成后直线段的斜率;Cai无试验资料时,可参考表2-3-5取值或按Ca为0.018w(w为土的天然含水量)估算;t1为相当于主固结完成100%的时间;t2为需要计算次固结沉降的时间(可计至主固结完成后)。

表2-3-5 次固结系数

(二)地基沉降计算修正

1.建筑地基变形计算与修正

计算地基变形时,地基内的应力分布可采用各向同性均质线性体变形体理论。其最终变形量可按下式计算:

深圳地质

图2-3-3 建筑地基沉降计算分层示意

式中:S为地基最终变形量,单位为mm;s′为按分层总和法计算出的地基变形量;Ψs为沉降计算经验系数,根据地区沉降观测资料及经验确定,无地区经验时按《建筑地基基础设计规范》(GB50007)取值,见表2-3-6;p0为对应于荷载效应准永久组合时的基础底面处的附加压力,单位为kPa;Esi为基础底面下第i层土的压缩模量,单位为MPa,应取土的自重压力至土的自重压力与附加压力之和的压力段计算;zi、zi-1为基础底面至第i层土、第i-1层土底面的距离,单位为mm(图2-3-3);、为基础底面计算点至第i层土、第i-1层土底面范围内平均附加应力系数,按《建筑地基基础设计规范》(GB50007)附录K采用。

表2-3-6 沉降计算经验系数

当建筑物地下室基础埋置较深时,需要考虑开挖基坑地基土的回弹,该部分回弹变形量可按下式计算:

深圳地质

式中:Sc为地基的回弹变形量;Ψc为考虑回弹的沉降计算经验系数,取1.0;pc为基坑底面以上土的自重压力,单位为kPa,地下水位以下应扣除浮力;Eci为土的回弹模量,按《土工试验方法标准》(GB/T50123)确定。

2.公路软土地基沉降计算修正

地基总沉降量将主固结沉降乘以修正系数来计算:

深圳地质

式中:修正系数ms为经验系数,与地基条件、荷载强度、加荷速率等有关;其范围值为1.1~1.7,应根据现场沉降观测资料确定,也可采用下面的经验公式估算:

深圳地质

式中:θ为地基处理类型系数,地基用塑料排水板处理时取0.95~1.1,用水泥搅拌桩处理时取0.85,一般预压时取0.90;H为路基中心高度,单位为m;γ为填料重度,单位为kN/m3;V为填土速率修正系数,填土速率在0.02~0.07m/d时取0.025;Y为地质因素修正系数,满足软土层不排水抗剪强度小于25kPa、软土层厚度大于5m时、硬壳层厚度小于2.5m的3个条件时,Y为0,其他情况下可取Y为-0.1。

3.铁路软土地基沉降计算修正

地基总沉降量计算公式同式(2.3.2-23)。式中修正系数ms,对饱和软黏土采用堆载预压排水固结法处理时,其值宜取1.2~1.4;采用真空预压排水固结法或复合地基处理时,其值可取1.0~1.2。

三、地基稳定性计算

地基稳定性计算可采用圆弧滑动面法、瑞典圆弧滑动面法、简化Bishop法、Ianbu普遍条分法和M0rgenstern-Price法等。各行业规范中采用的方法不尽相同。

(一)圆弧滑动面法

《建筑地基基础设计规范》,地基稳定性采用圆弧滑动面法进行验算,最危险的滑动面上诸力对滑动中心所产生的抗滑力矩与滑动力矩应符合下列要求:

深圳地质

式中:Ms为滑动力矩;MR为抗滑力矩。

(二)瑞典圆弧滑动法

瑞典的费伦纽斯等人提出,将滑动体在铅直方向上分成若干个土条,计算每个土条在滑动面上产生的滑动力矩和抗滑力矩,最后将它们叠加起来求得总的抗滑力矩和滑动力矩。此法忽略了条分间的作用力,故每个土条底部的反力可直接由该土条的荷重算出。

1.碾压式土石坝稳定计算

圆弧滑动稳定计算图示见图2-3-4,计算公式如下:

深圳地质

式中:w为土条质量;Q、v分别为水平和垂直地震惯性力(向上为负向下为正);u为作用于土条底面的孔隙水压力;a为条块重力线与通过此条块底面中点的半径之间的夹角;b为土条宽度;c′、ψ′为土条底面的有效应力抗剪强度指标;Mc为水平地震惯性力对圆心的力矩;R为圆弧半径。

图2-3-4 碾压式土石坝圆弧滑动条分法示意

2.公路软土地基路堤稳定性验算

软土地基路堤的稳定性验算一般采用瑞典圆弧滑动法中的固结有效应力法和改进总强度法。固结有效应力法考虑了软基路堤施工的实际情况,即路堤荷载并非瞬间填到设计高度,而是按照一定的施工速率逐渐填筑。改进总强度法是以ψi=0法为基础发展而来的,它是基于ψi=0法利用原位测试资料,借用固结有效应力法计算地基强度随固结增加的思想,采用强度增长系数计算固结过程中的强度的增量。计算图示见图2-3-5,计算公式如下:

图2-3-5 公路软土地基路堤稳定安全系数计算简图

(1)采用有效固结应力法验算时,稳定安全系数计算式为:

深圳地质

式中:Cqi、ψqi为地基土或路基填料快剪试验测得的内聚力和内摩擦角;ψcqi为地基土固结快剪试验测得的内摩擦角;Ui为地基平均固结度。

(2)采用改进总强度法验算时,稳定安全系数计算式为:

深圳地质

式中:Sui为由静力触探试验的贯入阻力(单桥探头)或锥尖阻力(双桥探头)换算的十字板抗剪强度或直接由十字板试验得到的抗剪强度;mi为地基土强度增长系数,按表2-3-7取值。

表2-3-.7 地基土层强度增长系数图2-3-6 公路路堤稳定简化Bishop法计算图示

(3)铁路软土地基路堤稳定性检算

《铁路特殊路基设计规范》中,软土地基上路堤的稳定安全系数应根据软土地基的特征和加固措施类型按下列不同情况计算。

软土层较厚,其抗剪强度随深度变化有明显规律时:

深圳地质

式中:So为地基抗剪强度增长线在地面上的截距;λ为抗剪强度随深度的递增率;hi为地基分条深度;li为分条的弧长;Ti为荷载与地基分条重力在圆弧上的切向分力。

当软土层次较多,其抗剪强度随深度变化无明显规律时,安全系数根据分层抗剪强度平均值计算:

深圳地质

式中:Sui为第i层的平均抗剪强度。

当考虑地基固结时:

深圳地质

式中:为地基平均固结度;NIIi为填土重力和上部荷载在圆弧上的法向分力;ψcui为第i土地基土固结不排水剪切的内摩擦角。

(三)简化Bishop法和Janbu普遍条分法

瑞典圆弧滑动法是假定剪切面(滑动面)为圆弧并且不考虑条分间的作用力,这样大大简化了计算量,但这是这种方法不合理的地方。当假设条分间只存在法向力,即假定条分间剪力为0时,这种算法称为简化Bishop法;当假设条分间法向压力的作用位置时,这种算法称为Janbu普遍条分法。

表2-3-.7 地基土层强度增长系数图2-3-6 公路路堤稳定简化Bishop法计算图示

1.公路路堤稳定性分析

路堤的堤身稳定性、路堤和地基的整体稳定性宜采用简化Bishop法进行分析计算(图2-3-6),计算公式如下:

当土条i滑弧位于地基中时

深圳地质

当土条i滑弧位于路堤中时

深圳地质

式中:Wi为第i土条重力;Qi为第i土条垂直方向外力;wdi、Wti分别为第i土条地基部分重力和路堤部分重力;Cdi、ψdi为第i土条滑弧所在地基土层的黏结力和内摩擦角;cti、ψti为第i土条滑弧所在路堤土层的黏结力和内摩擦角;αi为第i土条底滑面的倾角;ψi为第i土条滑弧所在土层的内摩擦角,滑弧位于地基中时取地基土的内摩擦角,位于路堤中时取路堤土的内摩擦角;bi为第i土条宽度;U为地基平均固结度。

2.公路软土地基路堤稳定性计算

简化Bishop法和Janbu普遍条分法都是较精确的计算方法,Janbu普遍条分法还常用于非圆弧滑动面的稳定验算。由于两种方法采用有效抗剪强度指标,取样试验的工作量较大,可以只在路堤的重点部位有选择采用。

(1)采用简化Bishop法验算时,稳定安全系数计算式为

深圳地质

式中:、分别为地基土三轴试验测得的有效内聚力和有效内摩擦角;bi为分条的水平宽度,即bi=Licosαi;ui为滑动面上的孔隙水压力。

(2)采用Janbu普遍条分法验算时,稳定安全系数计算式为

深圳地质

式中:△Ti为土条两侧边界上的剪力增量,可以根据土条两侧边界上的法向力作用点位置的假定计算出来。因为公式右端有k,△Ti计算过程中也含有k,所以安全系数计算需要采用迭代法。

(3)碾压式土石坝稳定计算

采用简化Bishop法时(计算图示见图2-3-4),可按下式计算:

深圳地质

式中各参数含义同式(2.3.2-26)。

(四)Morgenstern-Price法

摩根斯顿-普赖斯(Morgenstern-Price)法用于非圆弧滑动稳定性计算,该方法的特点是满足力和力矩平衡。碾压土石坝稳定性计算常采用。

计算图示见图2-3-7,计算公式如下:

图2-3-7 M orgenstern-Price法计算图示

深圳地质

式中:dx为土条宽度;dw为土条重量;q为坡顶外部的垂直荷载;Me为水平地震惯性力对土条底部中点的力矩;dQ、dV分别为土条的水平和垂直地震惯性力(向上为负,向下为正);α为条块底面与水平面的夹角;β为土条侧面的合力与水平方向的夹角;he为水平地震惯性力到土条底面中点的垂直距离。

四、抗浮结构设计计算

(一)抗浮稳定性验算

地下结构抗浮稳定性验算应满足下式要求:

深圳地质

式中:W为地下结构自重及其上作用的永久荷载标准值的总和;F为地下水浮力,不需考虑水浮托力作用的荷载分项系数,F=γwh,γw为水的重度;h为地下结构底到设防水位的距离。

当地下结构自重及地面上作用的永久荷载标准值的总和不满足上式时,应有抗浮措施。

(二)抗浮设防水位选取

地下水的设防水位选取应取建(构)筑物设计使用年限内(包括施工期间)可能产生的最高水位。勘察单位在勘察报告中要按照规范要求提供场区历年最高水位和近3~5年的最高地下水位,设计单位要根据勘察资料并针对工程情况合理确定地下结构抗浮的设防水位。广东省《建筑地基基础设计规范》(DB15-31-2003)中规定:在计算地下水的浮托力时,不宜考虑地下结构侧壁及底板结构与岩土接触面的摩擦作用和黏滞作用,除有可靠的长期控制地下水位的措施外,不应对地下水头进行折减。

(三)抗浮措施

土体的空隙及岩体的裂隙赋存有大量的地下水,地下水对埋置于岩土体之中或之上的地下结构或洼式结构会产生浮托力,若结构的自重小于浮托力时将发生上拱或上浮失稳破坏,影响结构的正常使用。近年来,大量带有地下室的高层建筑物、地下车库、下沉式广场以及地铁、地下商场等地下建(构)筑物的兴建,使抗浮问题非常突出,在深圳、大连等沿海城市出现了多起上浮事故,如深圳宝安中旅大酒店地下室最大隆起160mm,布吉某仓储蓄水池最大上浮1.8m,某游泳池因忽视抗浮问题造成池底开裂渗水。在抗浮设计或加固治理时,常采用的技术措施有:压载抗浮、降水排水截水抗浮、抗浮桩和抗浮锚杆等。当地下室基坑支护结构采用排桩或地下连续墙时,设计时可考虑将支护结构作为抗浮结构的一部分。

1.压载措施

坐落在岩土体中的建(构)筑物因结构自重小于地下水浮力才可能发生上浮,因此最简便、最直接的措施就是增加结构自重。对于纯地下车库、地下商场及地下水池等可在其顶板上覆土以增加压重,或将底板延伸利用外伸部分的覆土增加压重,也可增加底板厚度或其他压重措施。

采用压载抗浮的地下工程,在施工阶段一定要制定严密的施工顺序和紧急预防措施,避免发生意外险情。深圳西乡某水厂地下水池三期工程,在顶板未覆土之前做充水试验,放水后发现沉降缝两侧发生不均匀上浮,一天内局部最大上浮量达50mm多。

增加覆土厚度或增加底板厚度对地下结构抗浮很有效,但基础埋深势必增加,地下水浮力也相应增加,于是所增大了结构重量的作用有时会部分地被增加埋深所引起的浮力抵消,因此,抗浮设计使用压载抗浮技术措施时应认真核算。

2.降排截水技术

由于地下水浮力是造成地下建(构)筑物上浮的主要因素,在条件许可的前提下,可采取降水、排水或截水等处理措施直接排除隐患。深圳东深供水工程源水生物处理池,在对生物处理池各流通道的正常保养、维修时必须考虑消减库水对生物池底板巨大扬压力的影响,通过方案比选,认为加厚底板解决抗浮问题不宜采用,宜采用薄底板结合基础围封方案,对每条流道采用薄壁塑性混凝土地下连续墙进行围封处理,该工程建成以来,防渗效果好。

在发生上浮失稳或破坏的加固处理工程中,降排水处理方案是常用的主要措施或辅助措施。广东佛山永丰大厦塔楼与裙楼一个30m×38m的内庭,设有两层地下车库,场地处于原河流冲积层地带,地下水丰富,施工期间发现内庭范围内的地下室地板、地下一层板,内庭范围内的地面出现明显的上拱现象,测得地下室顶板最大上拱量213mm,为防止构件进一步破坏,首先在地下室底板上开孔放水,减小地下室底板的水压力,随着直径约150mm圆孔的凿开,压力巨大的水流夹带泥沙喷泄而出,4小时后,地下室起拱变形迅速减小到38mm,然后再进行下一步处理措施。

降排水方案有时并不是最佳方案,如广州地铁一号线东山口车站,若采用排水方案抗浮,50年运行期间的排水费用为226万元人民币,而采用锚杆抗浮则只需投资196万元人民币,还可避免因停电无法抽排地下水造成的隐患。

3.抗浮桩技术

抗浮桩利用桩体自重和桩侧摩阻力来提供抗拔力,是一种常用的抗浮技术措施。抗浮桩桩型种类多,如人工挖孔桩、钻孔桩和预应力管桩等。

4.抗浮锚杆技术

锚杆是一种埋入岩土体深处的受拉杆件,承受由土压力、水压力或其他荷载所产生的拉力。锚杆用于抵抗地下水浮力时,通常称之为抗浮锚杆,其锚固机理与抗浮桩相似,也是通过与锚侧岩土层的摩阻力来提供抗拔力。

抗浮锚杆的直径小,单锚提供的抗拔力比抗拔桩小,但抗浮锚杆采用高压注浆工艺,浆液能渗透到岩土体的空隙及裂隙中,锚侧的摩阻力比抗拔桩大,更有利于抗浮。因抗浮锚杆技术具有受力合理,造价低廉、施工便捷等优点,在沿海或沿江地区各大中型城市的工程建设中已迅速推广使用。在由地下水浮力造成破坏的加固处理工程中,一般常使用预应力锚杆作为永久抗浮措施。

抗浮锚杆的抗拔承载力应通过现场抗拔试验确定,试验锚杆抗拔承载力特征值Fa可按下式计算:

深圳地质

式中:ui为锚固体周长,单位为m;qsi为第i层土体与锚固体黏结强度特征值,单位为kPa;li为第i层土的锚杆长度。

土层抗浮锚杆经济合理长度宜小于10m,岩石锚杆锚固段长度应大于3m。根据大量工程实践统计,在设计抗拔力作用下,土层抗浮锚杆位移量宜小于15mm,岩石抗浮锚杆位移量宜小于10mm。

五、桩基设计参数

桩基设计的主要参数见表2-3-8

表2-3-8 桩侧摩阻力特征值(qsa)及桩的端阻力特征值(qpa)参考范围值

续表

⑷ matlab遗传算法计算表破最危险滑动面怎么编程谢谢各位大侠

美娇娘,播种爱与希望,
你把幸福花瓣,洒向我
像梦一样,把我掩埋。
倚胸膛,高山小心坚实,
泪珠乌发,濡湿香腮,
妩媚却如,庭前明月!
宿命的缘,红灯照,红线牵,
汹涌河流,呼唤我,

⑸ 潜在滑坡最危险滑动面的确定

对于已发生的滑坡,通过工程地质勘察确定滑动面,并利用以上方法可以计算其稳定系数。但是许多潜在滑坡还没有形成贯通的滑动面,需要在理论上找到一个最危险的滑动面,也就是在一系列可能的滑动面中找到稳定系数最小的面,基于圆弧形滑面的前提下,给出一种最危险滑动面的搜索算法。

如图6-3所示,首先假定滑动面与地面线的交点A(xA,zA)、B(xB,zB),B为剪出口,A在坡顶;有拉裂缝时,A在裂缝底端。过A点作铅垂线AE',实际情况下,滑动面圆弧不可能凹进铅垂线AE'左侧,故过A点和B点并与AE'线相切的弧AEB为滑动面圆弧的下限位置;当切线AE'向右移动靠向B点时,与其相切的圆弧将与坡面上的某一个下凹点(如C点)首先相接,此时由A点,B点和C点可确定一个圆ACB,ACB为滑动面圆弧的上限位置。滑动面圆弧ATB位于上限圆弧和下限圆弧之间。过A点作圆弧ACB的切线AC'交x轴于C',C'的横坐标为xc;过A点作圆弧ATB的切线AT'交x轴于T',T'的横坐标为xt,过A点、B点和以AT'为切线可以唯一确定一个圆弧ATB。其中xt在区间(xA,xC)上取值。由此圆弧ATB可以表示成A、B点的坐标和xt的函数,若认为AB点固定,则该圆弧滑动面的稳定系数为xt的一元函数k(xt)。

图6-3 最危险滑动面搜索图解

这里还需注意xt的上限xC的取值,应保证圆弧不与坡面线相交,否则会导致求解错误。

根据xt的意义,xt∈(xA,xC),在该区间上,给定一个xt,对应一个滑弧。

当斜坡坡形一定时,圆弧面的圆心坐标和半径均为参数xt的函数,根据几何关系容易导出:

黄土滑坡勘测技术与评价方法

滑动面半径为:

黄土滑坡勘测技术与评价方法

则滑动面的方程可以表示为:

黄土滑坡勘测技术与评价方法

将式6-55~式6-58代入计算稳定系数的相关公式中,获得关于xt、剪出口横坐标xb和后缘点横坐标xa与稳定系数k之间的关系。这样利用黄金分割法逐步变换这三个控制量,通过三重循环逼近即可得到这三个量相对应的稳定系数的极值,求出其中的最小值,就是边坡的稳定系数,同时求得相应的最危险潜在滑动面的参数:圆心坐标(xO,zO),半径R,以及剪出口坐标(xB,zB)和后缘点坐标(xA,zA)。

在编程计算中采用了0.618法,即黄金分割法求极小值。

⑹ 折线形滑动面计算的公式中为什么会有稳定系数

、边坡破坏——滑动面,形状?与土质有关 ☆ 单一破坏面—静力平衡可求解未知力 ☆ 二个破坏面—一次超静定问题 ☆ 多个破坏面—多次超静定问题 2、变为静定问题的假设 按平面问题处理;砂性土和砾石土采用直线破裂面法;粘性土采用圆弧破裂面法。 3、近似算法的假设 不考虑滑动土体内应力分布;滑动土体整体下滑;极限滑动面位置要通过试算来确定。 二、边坡稳定性分析的计算参数 (一)土的计算参数;取值力求能与路基将来的实际情况一致 1、路堑或天然边坡:原状土的容重γ 、内摩擦角φ 、粘聚力 c 2、路堤边坡:取与现场压实度一致的压实土数据γ 、φ 、c 3、边坡由多层土体构成:合理分段,直接取用不同土层的参数; 较为粗略的采用加权平均法得到γ 、φ 、c (二)边坡取值 折线形或阶梯形边坡取平均值。 (三)汽车荷载当量换算 车辆按最不利情况排列,设计荷载换算为当量土柱高: h0 ? NQ (m) BL? h0 厚的当量土层可分布在行车道范围或整个路基宽度上;近似方法(如图解或表解等)计算时,亦 可以不计算荷载的影响。

⑺ 关于理正抗滑桩的中的“计算方法”选项“M法、C法、K法”这三个选项中每个选项的值该如何算或者如何选

计算土反力时,需要确定弹性抗力系数K=my+A、K=Cy0.5+A、K=K+A(分别对应m法、C法、K法),其中A表示嵌固面处(y=0)。

桩侧岩土体的弹性抗力系数简称为地基反力系数,是地基承受的侧压力与桩在该位置处产生的侧向位移的比值。也即单位土体或岩体在弹性限度内产生单位压缩变形时所需施加于其单位面积上的力。常采用的有三种假设:

1、假设地基系数不随深度而变化,即地基系数为常数的K法。

2、假定地基系数随深度而呈直线变化的m法。

3、地基反力系数沿深度按凸抛物线增大的C法。

(7)滑动面反算法扩展阅读:

注意事项:

1、抗滑桩可用于稳定滑坡、加固山体及其他特殊路基。

2、抗滑桩应按工点设计图施工。开挖中应核对滑面情况,当实际位置与设计出入较大时,应通过变更设计处理。

3、抗滑桩应分节开挖,每节高度宜为0.6~2.0m,挖一节立即支护一节。护壁混凝土模板的支撑可于浇筑后24小时拆除。爆破应采用减震措施,弃砟不得堆在滑坡范围内,开挖桩群应从两端向滑坡主轴间隔开挖,灌桩1d后才可开挖邻桩。

⑻ 基础抗滑移计算怎么做

楼主弄反了吧,应该是:MR——抗滑力矩(KN·m),MS——滑动力矩(KN·m)。挡土墙的抗滑移计算,是验算沿墙底滑动的稳定性,是一种平面滑动,即地基土并不参与滑动。而式(5.4.1)用于圆弧滑动,其滑动面位于地基土层,且在黏性土中滑动面为圆弧,非黏性土一般为折线。所以这是两种不同的概念,不可混淆。 查看gt;gt;

热点内容
c语言inti 发布:2024-11-19 01:27:33 浏览:605
登录政务服务网如何保存密码 发布:2024-11-19 00:59:05 浏览:9
怎么登陆appleid密码忘了怎么办啊 发布:2024-11-19 00:29:54 浏览:655
极地大乱斗挂机脚本 发布:2024-11-19 00:29:01 浏览:421
iphone怎么新建文件夹 发布:2024-11-19 00:24:37 浏览:914
免费代理服务器ip和端口怎么用 发布:2024-11-19 00:20:10 浏览:880
c语言带参数的宏 发布:2024-11-19 00:07:31 浏览:946
15人团队解压拓展有什么作用 发布:2024-11-18 23:46:34 浏览:307
百米2什么配置 发布:2024-11-18 23:37:55 浏览:651
mp3存储 发布:2024-11-18 23:20:08 浏览:866