当前位置:首页 » 操作系统 » 先来先服务调度的算法

先来先服务调度的算法

发布时间: 2022-07-06 07:31:20

‘壹’ 作业调度的算法有哪些

作业调度的算法有:算法有先来先服务、最短作业优先算法、最高响应比优先算法、基于优先数调度算法。

1、算法有先来先服务

最简单的调度算法,按作业的先后顺序进行调度,只考虑每个作业的等待时间而未考虑执行时间的长短。

2、最短作业优先算法

最短作业优先算法是对先来先服务算法的改进,其目标是减少平均周转时间。对预计执行时间短的作业优先分派处理机。通常后来的短作业不抢先正在执行的作业。 只考虑执行时间而未考虑等待时间的长短。

3、最高响应比优先算法

最高响应比优先算法是对先来先服务方式和最短作业优先算法方式的一种综合平衡。最高响应比优先法调度策略同时考虑每个作业的等待时间的长短和估计需要的执行时间长短,从中选出相应比最高的作业投入执行。

4、基于优先数调度算法

优先数调度算法常用于批处理系统中。在进程调度中,每次调度时,系统把处理机分配给就绪队列中优先数最高的进程。它又分为两种:非抢占式优先数算法和抢占式优先数算法。

(1)先来先服务调度的算法扩展阅读:

作业调度是指按照时间周期(年、月、日、时、分、秒等)对作业进行分割,并根据业务需求、作业长度、存储管理及依赖性关系对作业的执行方式加以调度。主要任务是从作业后备队列中选择作业进入主存运行。作业调度的功能主要有以下几方面:

1、记录各作业在系统中的状态;

2、从后备队列中挑选一部分作业投入运行;

3、从被选中的作业做好执行前的准备工作;

4、在作业执行结束时,做善后处理工作。

进行作业调度有很多作业调度算法,这些作业调度算法要实现的目标是:

1、调度对所有作业都是公平合理的;

2、应使设备有较高的利用率(提供系统利用率);

3、每次运行尽可能多的作业(提高系统吞吐量);

4、较快的相应时间。

‘贰’ 先来先服务调度算法。 优先级调度算法。 短作业优先调度算法 轮转调度算法 响应比高优先调度算法

你试一下

#include<stdio.h>
//using namespace std;
#define MAX 10
struct task_struct
{
char name[10]; /*进程名称*/
int number; /*进程编号*/
float come_time; /*到达时间*/
float run_begin_time; /*开始运行时间*/
float run_time; /*运行时间*/
float run_end_time; /*运行结束时间*/
int priority; /*优先级*/
int order; /*运行次序*/
int run_flag; /*调度标志*/
}tasks[MAX];
int counter; /*实际进程个数*/
int fcfs(); /*先来先服务*/
int ps(); /*优先级调度*/
int sjf(); /*短作业优先*/
int hrrn(); /*响应比高优先*/
int pinput(); /*进程参数输入*/
int poutput(); /*调度结果输出*/

void main()
{ int option;
pinput();
printf("请选择调度算法(0~4):\n");
printf("1.先来先服务\n");
printf("2.优先级调度\n");
printf(" 3.短作业优先\n");
printf(" 4.响应比高优先\n");
printf(" 0.退出\n");
scanf("%d",&option);
switch (option)
{case 0:
printf("运行结束。\n");
break;
case 1:
printf("对进程按先来先服务调度。\n\n");
fcfs();
poutput();
break;
case 2:
printf("对进程按优先级调度。\n\n");
ps();
poutput();
break;
case 3:
printf("对进程按短作业优先调度。\n\n");
sjf();
poutput();
break;
case 4:
printf("对进程按响应比高优先调度。\n\n");
hrrn();
poutput();
break;
}
}
int fcfs() /*先来先服务*/
{
float time_temp=0;
inti;
intnumber_schel;
time_temp=tasks[0].come_time;
for(i=0;i<counter;i++)
{
tasks[i].run_begin_time=time_temp;
tasks[i].run_end_time=tasks[i].run_begin_time+tasks[i].run_time;
tasks[i].run_flag=1;
time_temp=tasks[i].run_end_time;
number_schel=i;
tasks[number_schel].order=i+1;
}
return 0;
}

int ps() /*优先级调度*/
{
float temp_time=0;
inti=0,j;
intnumber_schel,temp_counter;
intmax_priority;
max_priority=tasks[i].priority;
j=1;
while((j<counter)&&(tasks[i].come_time==tasks[j].come_time))
{
if (tasks[j].priority>tasks[i].priority)
{
max_priority=tasks[j].priority;
i=j;
}
j++;
} /*查找第一个被调度的进程*/
/*对第一个被调度的进程求相应的参数*/
number_schel=i;
tasks[number_schel].run_begin_time=tasks[number_schel].come_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].order=1;
temp_counter=1;
while (temp_counter<counter)
{
max_priority=0;
for(j=0;j<counter;j++)
{if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
if (tasks[j].priority>max_priority)
{
max_priority=tasks[j].priority;
number_schel=j;
}
} /*查找下一个被调度的进程*/
/*对找到的下一个被调度的进程求相应的参数*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
temp_counter++;
tasks[number_schel].order=temp_counter;

}return 0;
}

int sjf() /*短作业优先*/
{
float temp_time=0;
inti=0,j;
intnumber_schel,temp_counter;
float run_time;
run_time=tasks[i].run_time;
j=1;
while((j<counter)&&(tasks[i].come_time==tasks[j].come_time))
{
if (tasks[j].run_time<tasks[i].run_time)
{
run_time=tasks[j].run_time;
i=j;
}
j++;
} /*查找第一个被调度的进程*/
/*对第一个被调度的进程求相应的参数*/
number_schel=i;
tasks[number_schel].run_begin_time=tasks[number_schel].come_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].order=1;
temp_counter=1;
while (temp_counter<counter)
{
for(j=0;j<counter;j++)
{
if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
{run_time=tasks[j].run_time;number_schel=j;break;}
}

for(j=0;j<counter;j++)
{if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
if(tasks[j].run_time<run_time)
{run_time=tasks[j].run_time;
number_schel=j;
}
}
/*查找下一个被调度的进程*/
/*对找到的下一个被调度的进程求相应的参数*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
tasks[number_schel].run_flag=1;
temp_time=tasks[number_schel].run_end_time;
temp_counter++;
tasks[number_schel].order=temp_counter;
}return 0;
}

int hrrn() /*响应比高优先*/
{ int j,number_schel,temp_counter;
float temp_time,respond_rate,max_respond_rate;
/*第一个进程被调度*/
tasks[0].run_begin_time=tasks[0].come_time;
tasks[0].run_end_time=tasks[0].run_begin_time+tasks[0].run_time;
temp_time=tasks[0].run_end_time;
tasks[0].run_flag=1;
tasks[0].order=1;
temp_counter=1;
/*调度其他进程*/
while(temp_counter<counter)
{
max_respond_rate=0;
for(j=1;j<counter;j++)
{
if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))
{respond_rate=(temp_time-tasks[j].come_time)/tasks[j].run_time;
if (respond_rate>max_respond_rate)
{
max_respond_rate=respond_rate;
number_schel=j;
}
}
} /*找响应比高的进程*/
tasks[number_schel].run_begin_time=temp_time;
tasks[number_schel].run_end_time=tasks[number_schel].run_begin_time+tasks[number_schel].run_time;
temp_time=tasks[number_schel].run_end_time;
tasks[number_schel].run_flag=1;
temp_counter+=1;
tasks[number_schel].order=temp_counter;
}
return 0;
}
int pinput() /*进程参数输入*/
{ int i;
printf("please input the processcounter:\n");
scanf("%d",&counter);

for(i=0;i<counter;i++)
{printf("******************************************\n");
printf("please input the process of %d th :\n",i+1);
printf("please input the name:\n");
scanf("%s",tasks[i].name);
printf("please input the number:\n");
scanf("%d",&tasks[i].number);
printf("please input the come_time:\n");
scanf("%f",&tasks[i].come_time);
printf("please input the run_time:\n");
scanf("%f",&tasks[i].run_time);
printf("please input the priority:\n");
scanf("%d",&tasks[i].priority);
tasks[i].run_begin_time=0;
tasks[i].run_end_time=0;
tasks[i].order=0;
tasks[i].run_flag=0;
}
return 0;
}
int poutput() /*调度结果输出*/
{
int i;
float turn_round_time=0,f1,w=0;
printf("name number come_time run_timerun_begin_time run_end_time priority order turn_round_time\n");
for(i=0;i<counter;i++)
{
f1=tasks[i].run_end_time-tasks[i].come_time;
turn_round_time+=f1;
w+=(f1/tasks[i].run_time);
printf(" %s, %d, %5.3f, %5.3f, %5.3f, %5.3f, %d, %d,%5.3f\n",tasks[i].name,tasks[i].number,tasks[i].come_time,tasks[i].run_time,tasks[i].run_begin_time,tasks[i].run_end_time,tasks[i].priority,tasks[i].order,f1);
}
printf("average_turn_round_timer=%5.2f\n",turn_round_time/counter);
printf("weight_average_turn_round_timer=%5.2f\n",w/counter);
return 0;
}

‘叁’ 操作系统先进先出(FIFO)和先来先服务(FCFS)有什么区别

1.先来先服务调度算法(FCFS):就是按照各个作业进入系统的自然次序来调度作业。这种调度算法的优点是实现简单,公平。其缺点是没有考虑到系统中各种资源的综合使用情况,往往使短作业的用户不满意,因为短作业等待处理的时间可能比实际运行时间长得多。

2.先进先出算法(FIFO):按照进程进入就绪队列的先后次序来选择。即每当进入进程调度,总是把就绪队列的队首进程投入运行。

‘肆’ CPU的调度算法:先来先服务、最短运行期、时间片轮转、优先权设置分别是什么意思

调度算法说的是现在有若干个进程(每个进程拥有自己的属性),算法根据它们的属性选择哪一个进程去执行。

先来先服务:按照进程来的时间早晚属性来判断,先来的先执行
最短:按照进程运行需要的时间长短属性来判断,最短的先执行
时间片轮转:和进程属性无关,每个进程都分配相同的时间去运行,轮着来
优先权设置:根据进程的优先级属性判断谁先执行,优先级是用户可以设定的
希望能够帮到你

‘伍’ 作业调度的算法都有哪些

作业调度的算法有:算法有先来先服务、最短作业优先算法、最高响应比优先算法、基于优先数调度算法。

1、算法有先来先服务

最简单的调度算法,按作业的先后顺序进行调度,只考虑每个作业的等待时间而未考虑执行时间的长短。

2、最短作业优先算法

最短作业优先算法是对先来先服务算法的改进,其目标是减少平均周转时间。对预计执行时间短的作业优先分派处理机。通常后来的短作业不抢先正在执行的作业。 只考虑执行时间而未考虑等待时间的长短。

3、最高响应比优先算法

最高响应比优先算法是对先来先服务方式和最短作业优先算法方式的一种综合平衡。最高响应比优先法调度策略同时考虑每个作业的等待时间的长短和估计需要的执行时间长短,从中选出相应比最高的作业投入执行。

4、基于优先数调度算法

优先数调度算法常用于批处理系统中。在进程调度中,每次调度时,系统把处理机分配给就绪队列中优先数最高的进程。它又分为两种:非抢占式优先数算法和抢占式优先数算法。

(5)先来先服务调度的算法扩展阅读:

作业调度是指按照时间周期(年、月、日、时、分、秒等)对作业进行分割,并根据业务需求、作业长度、存储管理及依赖性关系对作业的执行方式加以调度。主要任务是从作业后备队列中选择作业进入主存运行。作业调度的功能主要有以下几方面:

1、记录各作业在系统中的状态;

2、从后备队列中挑选一部分作业投入运行;

3、从被选中的作业做好执行前的准备工作;

4、在作业执行结束时,做善后处理工作。

进行作业调度有很多作业调度算法,这些作业调度算法要实现的目标是:

1、调度对所有作业都是公平合理的;

2、应使设备有较高的利用率(提供系统利用率);

3、每次运行尽可能多的作业(提高系统吞吐量);

4、较快的相应时间。

‘陆’ 先来先服务调度算法的思想是什么

先来先服务(FCFS: first come first service)总是把当前处于就绪队列之首的那个进程调度到运行状态。也就说,它只考虑进程进入就绪队列的先后,而不考虑它的下一个CPU周期的长短及其他因素。FCFS算法简单易行,但性能却不大好。

‘柒’ 先来先服务(FCFS)调度算法 工作原理 优缺点

进程按到来的时间先后顺序依次被CPU处理。
优点:就是俗话说的“先来后到”。
缺点:如果先来的进程需要很长的处理时间,而后来的进程却很重要的。需要抢占CUP的时候,此调度算法就适用了。

‘捌’ 进程调度算法是什么

调度算法是指:根据系统的资源分配策略所规定的资源分配算法。
一、先来先服务和短作业(进程)优先调度算法

1. 先来先服务调度算法。先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度, 也可用于进程调度。FCFS算法比较有利于长作业(进程),而不利于短作业(进程)。由此可知,本算法适合于CPU繁忙型作业, 而不利于I/O繁忙型的作业(进程)。
2. 短作业(进程)优先调度算法。短作业(进程)优先调度算法(SJ/PF)是指对短作业或短进程优先调度的算法,该算法既可用于作业调度, 也可用于进程调度。但其对长作业不利;不能保证紧迫性作业(进程)被及时处理;作业的长短只是被估算出来的。

二、高优先权优先调度算法

1. 优先权调度算法的类型。为了照顾紧迫性作业,使之进入系统后便获得优先处理,引入了最高优先权优先(FPF)调度算法。 此算法常被用在批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度,还可以用于实时系统中。当其用于作业调度, 将后备队列中若干个优先权最高的作业装入内存。当其用于进程调度时,把处理机分配给就绪队列中优先权最高的进程,此时, 又可以进一步把该算法分成以下两种:
1)非抢占式优先权算法
2)抢占式优先权调度算法(高性能计算机操作系统)
2. 优先权类型 。对于最高优先权优先调度算法,其核心在于:它是使用静态优先权还是动态优先权, 以及如何确定进程的优先权。
3. 高响应比优先调度算法
为了弥补短作业优先算法的不足,我们引入动态优先权,使作业的优先等级随着等待时间的增加而以速率a提高。 该优先权变化规律可描述为:优先权=(等待时间+要求服务时间)/要求服务时间;即 =(响应时间)/要求服务时间

三、基于时间片的轮转调度算法

1. 时间片轮转法。时间片轮转法一般用于进程调度,每次调度,把CPU分配队首进程,并令其执行一个时间片。 当执行的时间片用完时,由一个记时器发出一个时钟中断请求,该进程被停止,并被送往就绪队列末尾;依次循环。 2. 多级反馈队列调度算法 多级反馈队列调度算法多级反馈队列调度算法,不必事先知道各种进程所需要执行的时间,它是目前被公认的一种较好的进程调度算法。 其实施过程如下:
1) 设置多个就绪队列,并为各个队列赋予不同的优先级。在优先权越高的队列中, 为每个进程所规定的执行时间片就越小。
2) 当一个新进程进入内存后,首先放入第一队列的末尾,按FCFS原则排队等候调度。 如果他能在一个时间片中完成,便可撤离;如果未完成,就转入第二队列的末尾,在同样等待调度…… 如此下去,当一个长作业(进程)从第一队列依次将到第n队列(最后队列)后,便按第n队列时间片轮转运行。
3) 仅当第一队列空闲时,调度程序才调度第二队列中的进程运行;仅当第1到第(i-1)队列空时, 才会调度第i队列中的进程运行,并执行相应的时间片轮转。
4) 如果处理机正在处理第i队列中某进程,又有新进程进入优先权较高的队列, 则此新队列抢占正在运行的处理机,并把正在运行的进程放在第i队列的队尾。

‘玖’ 如何理解先来先服务fcfs和短作业优先sjf进程调度算法

先来先服务FCFS和短作业优先 和短作业优先SJF进程调度算法 先来先服务 和短作业优先 进程调度算法 1、实验目的 通过这次实验,加深对进程概念的理解,进一步掌握进程状态的 转变、进程调度的策略及对系统性能的评价方法。 2、需求分析 (1) 输入的形式和输入值的范围 输入值:进程个数Num 依次输入Num个进程的到达时间 依次输入Num个进程的服务时间 范围:0<Num<=100 范围: 范围: 输入要使用的算法(1-FCFS,2-SJF) 范围:1或者2 输出的形式( 表示变量) (2) 输出的形式(X表示变量) 时刻X:进程X开始运行。 其完成时间:X 周转时间:X 带权周转时 间:X …(省略(Num-1)个) 平均周转时间:X 平均带权周转时间:X (3) 程序所能达到的功能 输入进程个数Num,每个进程到达时间ArrivalTime[i],服务时间 ServiceTime[i]。采用先来先服务FCFS或者短作业优先SJF进程调度算 法进行调度,计算每个进程的完成时间、周转时间和带权周转时间, 并且统计Num个进程的平均周转时间和平均带权周转时间。 3、概要设计 说明本程序中用到的所有抽象数据类型的定义、 主程序的流程以 及各程序模块之间的层次(调用)关系。 4、详细设计 5、调试分析 (1)调试过程中遇到的问题以及解决方法, (1)调试过程中遇到的问题以及解决方法,设计与实现的回顾讨 调试过程中遇到的问题以及解决方法 论和分析 1 ○ 开始的时候没有判断进程是否到达, 导致短进程优先算法运 开始的时候没有判断进程是否到达, 行结果错误,后来加上了判断语句后就解决了改问题。 行结果错误,后来加上了判断语句后就解决了改问题。 2 ○ 基本完成的设计所要实现的功能, 总的来说, FCFS编写容易, 基本完成的设计所要实现的功能, 总的来说, FCFS编写容易, 编写容易 SJF 需要先找到已经到达的进程, 需要先找到已经到达的进程, 再从已经到达的进程里找到进程服务时 间最短的进程,再进行计算。 间最短的进程,再进行计算。 (2)算 (2)算法的改进设想 改进: 改进:即使用户输入的进程到达时间没有先后顺序也能准确 的计算出结果。(就是再加个循环,判断各个进程的到达时间先后, 的计算出结果。(就是再加个循环,判断各个进程的到达时间先后, 。(就是再加个循环 组成一个有序的序列) 组成一个有序的序列) (3)经验和体会 (3)经验和体会 通过本次实验, 通过本次实验,深入理解了先来先服务和短进程优先进程调 度算法的思想,培养了自己的动手能力,通过实践加深了记忆。 度算法的思想,培养了自己的动手能力,通过实践加深了记忆。

‘拾’ 实时操作系统常用任务调度算法有哪些

实时操作系统常用任务调度算法有哪些
操作系统常用的批处理作业调度算法
1.先来先服务调度算法
先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
2.短作业(进程)优先调度算法

热点内容
搭建300人上网的服务器 发布:2025-01-24 15:23:01 浏览:280
流控源码 发布:2025-01-24 15:09:51 浏览:476
火山服务器升级什么时候完成 发布:2025-01-24 15:08:38 浏览:246
android版本设置 发布:2025-01-24 15:08:26 浏览:723
python打印机打印图片 发布:2025-01-24 14:59:49 浏览:227
javascript设计模式源码 发布:2025-01-24 14:49:07 浏览:908
linqtosql查询 发布:2025-01-24 14:48:57 浏览:120
华为手机更换开机密码如何操作 发布:2025-01-24 14:43:15 浏览:699
快手等待上传 发布:2025-01-24 14:41:37 浏览:380
apache和php7 发布:2025-01-24 14:32:26 浏览:892