当前位置:首页 » 操作系统 » 人脸检测识别算法

人脸检测识别算法

发布时间: 2022-07-05 04:44:26

‘壹’ 人脸识别算法的种类

二维人脸识别算法
三维人脸识别算法

‘贰’ 人脸识别算法是什么

在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。像现在 虹 软、百 度 都在做人脸识别算法。

‘叁’ 人脸识别测距原理

人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。

中文名
人脸识别
别名
人像识别、面部识别
工具
摄像机或摄像头
传统技术
可见光图像的人脸识别
处理方法
人脸识别算法

人脸识别技术有滥用趋势
10月13日,小蛮腰科技大会在广州开幕。在“后疫情时代的大数据应用与隐私保护”分论坛上,南方都市报人工智能伦理课题组和App专项治理工作组发布了《人脸识别应用公众调研报告(2020)》。《报告》显示,六成受访者认为人脸识别技术有滥用趋势,三成受访者表示已因人脸信息泄露、滥用而遭受隐私或财产损失。
新华网 2020-10-19
快速
导航
技术特点

技术流程

识别算法

识别数据

配合程度

优势困难

主要用途

应用前景

主要产品

应用示例
发展历史
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。[1]
技术特点

人脸识别
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。
迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。
人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。
技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。

‘肆’ 人脸识别原理及算法

人脸识别原理就是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。

人脸识别是一项热门的计算机技术研究领域,其中包括人脸追踪侦测,自动调整影像放大,夜间红外侦测,自动调整曝光强度等技术。

人脸识别技术是基于人的脸部特征,对输入的人脸图像或者视频流 . 首先判断其是否存在人脸 , 如果存在人脸,则进一步的给出每个脸的位置、大小和各个主要面部器官的位置信息。并依据这些信息,进一步提取每个人脸中所蕴涵的身份特征,并将其与已知的人脸进行对比,从而识别每个人脸的身份。

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。

人脸识别是采用的分析算法。

人脸识别技术中被广泛采用的区域特征分析算法,它融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,即人脸特征模板。利用已建成的人脸特征模板与被测者的人的面像进行特征分析,根据分析的结果来给出一个相似值。通过这个值即可确定是否为同一人。

‘伍’ 人脸识别的识别算法

人脸识别的基本方法

人脸识别的方法很多,以下介绍一些主要的人脸识别方法。

(1)几何特征的人脸识别方法

几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

(2)基于特征脸(PCA)的人脸识别方法

特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。

(3)神经网络的人脸识别方法

神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

(4)弹性图匹配的人脸识别方法

弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

(5)线段Hausdorff 距离(LHD) 的人脸识别方法

心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

(6)支持向量机(SVM) 的人脸识别方法

近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,该函数的取法没有统一的理论。

人脸识别的方法很多,当前的一个研究方向是多方法的融合,以提高识别率。

在人脸识别中,第一类的变化是应该放大而作为区分个体的标准的,而第二类的变化应该消除,因为它们可以代表同一个个体。通常称第一类变化为类间变化,而称第二类变化为类内变化。对于人脸,类内变化往往大于类间变化,从而使在受类内变化干扰的情况下利用类间变化区分个体变得异常困难。正是基于上述原因,一直到21 世纪初,国外才开始出现人脸识别的商用,但由于人脸识别算法非常复杂,只能采用庞大的服务器,基于强大的计算机平台。



如果可以的话,可以Te一下colorreco,更好的技术解答。

‘陆’ 人脸识别算法的简介

人脸识别(Facial Recognition),就是通过视频采集设备获取用户的面部图像,再利用核心的算法对其脸部的五官位置、脸型和角度进行计算分析,进而和自身数据库里已有的范本进行比对,后判断出用户的真实身份。人脸识别技术基于局部特征区域的单训练样本人脸识别方法。第一步,需要对局部区域进行定义;第二步,人脸局部区域特征的提取,依据经过样本训练后得到的变换矩阵将人脸图像向量映射为人脸特征向量;第三步,局部特征选择(可选);后一步是进行分类。分类器多采用组合分类器的形式,每个局部特征 对应一个分类器,后可用投票或线性加权等方式得到终识别结果。 人脸识别综合运用了数字图像/视频处理、模式识别、计算机视觉等多种技术,核心技 术是人脸识别算法。目前人脸识别的算法有 4 种:基于人脸特征点的识别算法、基于整幅 人脸图像的识别算法、基于模板的识别算法、利用神经网络进行识别的算法。
作为人脸识别的第一步,人脸检测所进行的工作是将人脸从图像背景中检测出来,由于受图像背景、亮度变化以及人的头部姿势等因素影响使人脸检测成为一项复杂研究内容。检测定位:检测是判别一幅图像中是否存在人脸,定位则是给出人脸在图像中的位置。定位后得到的脸部图像信息是测量空间的模式,要进行识别工作,首先要将测量空间中的数据映射到特征空间中。采用主分量分析方法,原理是将一高维向量,通过一个特殊的特征向量矩阵,投影到一个低维的向量空间中,表征为一个低维向量,并且仅仅损失一些次要信息。通过对经过检测和定位过的人脸图像进行特征提取操作可以达到降低图像维数,从而可以减小识别计算量,提高识别精度的作用。人脸识别系统采用基于特征脸的主 成分分析法(PCA),根据一组人脸训练样本构造主元子空间,检测时,将测试图像投影到 主元空间上,得到一组投影系数,再和各已知的人脸图像模式比较,从而得到检测结果。

‘柒’ 什么是人脸识别技术

人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。它通过采集含有人脸的图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频中的人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。具体的你可以咨询下瑞驰信息技术,他们这块专业的公司。

‘捌’ 脸受伤怎样进行人脸识别

可以。人脸识别主要靠脸部的骨骼和五官数据,主要不是受伤太严重,受伤不影响识别。
拓展:人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输入图像尺寸”、或“最小脸尺寸限制”、或“人脸数量上限”的方式来加速算法。

‘玖’ 人脸识别技术是什么

人脸识别是基于人的面部特征信息进行身份识别的一种生物识别技术。它通过采集含有人脸的图片或视频流,并在图片中自动检测和跟踪人脸,进而对检测到的人脸进行面部识别。人脸识别可提供图像或视频中的人脸检测定位、人脸属性识别、人脸比对、活体检测等功能。虹软科技在人脸识别方面做的不错

‘拾’ 人脸识别系统如何工作的

人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。

人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
人脸检测过程中使用Adaboost算法挑选出一些最能代表人脸的矩形特征(弱分类器),按照加权投票的方式将弱分类器构造为一个强分类器,再将训练得到的若干强分类器串联组成一个级联结构的层叠分类器,有效地提高分类器的检测速度。

热点内容
四川密码门锁哪里有卖的 发布:2024-11-18 12:41:06 浏览:904
java获取天数 发布:2024-11-18 12:36:57 浏览:604
jdbcoracle连接数据库 发布:2024-11-18 12:08:40 浏览:821
服务器地址如何推送给客服 发布:2024-11-18 11:46:27 浏览:222
android滑动菜单左右 发布:2024-11-18 11:45:45 浏览:654
安卓如何把手机短信导入电脑 发布:2024-11-18 11:32:44 浏览:298
如何天选2查看电脑配置 发布:2024-11-18 11:32:36 浏览:422
phpinclude目录 发布:2024-11-18 11:29:38 浏览:723
西门子hmi屏反编译软件 发布:2024-11-18 11:29:36 浏览:764
安卓机如何看微信撤回消息 发布:2024-11-18 11:25:08 浏览:571