当前位置:首页 » 操作系统 » 相似度算法

相似度算法

发布时间: 2022-01-12 02:50:20

㈠ 如何进行相似度的计算,主要用什么方式

如何计算句子的语义相似度,很容易想到的是向量空间模型(VSM)和编辑距离的方法,比如A:“我爸是李刚”,B:“我儿子是李刚”,利用VSM方法A(我,爸,是,李刚)B(我,儿子,是,李刚),计算两个向量的夹角余弦值,不赘述;编辑距离就更好说了将“爸”,“儿子”分别替换掉,D(A,B)= replace_cost;
这是两种相当呆的方法,属于baseline中的baseline,换两个例子看一下就知道A:“楼房如何建造?”,B:“高尔夫球怎么打?”,C:“房子怎么盖?”,如果用VSM算很明显由于B,C中有共同的词“怎么”,所以BC相似度高于AC;编辑距离同理;
解决这种问题方法也不难,只要通过同义词词典对所有句子进行扩展,“如何”、“怎么”,“楼房”、“房子”都是同义词或者近义词,扩展后再算vsm或者edit distance对这一问题即可正解.这种方法一定程度上解决了召回率低的问题,但是扩展后引入噪声在所难免,尤其若原句中含有多义词时.例如:“打酱油”、“打毛衣”.在汉字中有些单字词表达了相当多的意义,在董振东先生的知网(hownet)中对这种类型汉字有很好的语义关系解释,通过hownet中词语到义元的树状结构可以对对词语粒度的形似度进行度量.
问题到这里似乎得到了不错的解答,但实际中远远不够.VSM的方法把句子中的词语看做相互独立的特征,忽略了句子序列关系、位置关系对句子语义的影响;Edit Distance考虑了句子中词语顺序关系,但是这种关系是机械的置换、移动、删除、添加,实际中每个词语表达了不同的信息量,同样的词语在不同词语组合中包含的信息量或者说表达的语义信息大不相同.What about 句法分析,计算句法树的相似度?这个比前两种方法更靠谱些,因为句法树很好的描述了词语在句子中的地位.实际效果要待实验证实.
对了,还有一种方法translation model,IBM在机器翻译领域的一大创举,需要有大量的语料库进行训练才能得到理想的翻译结果.当然包括中间词语对齐结果,如果能够利用web资源建立一个高质量的语料库对两两相似句对通过EM迭代词语对齐,由词语对齐生成句子相似度,这个.想想还是不错的方法!

㈡ 计算两个概念的相似度,用什么算法比较好

本体映射可以用来解决本体异构问题,也是本体结盟、本体集成、本体合并、本体翻译等的技术基础。本文针对目前本体映射中概念相似度计算所存在的问题,提出了一种综合的相似度计算方法。首先根据两个概念名称相似性过滤出最相关的概念,减少相似度的计算;然后基于概念实例、基于概念属性、基于概念关系计算概念相似度,并进行综合;最后对其性能进行了简单分析。...

㈢ 数组相似度计算

你是求一个相似度算法:
如果一个公司真实排名为x1, 而你的打分排名是 x2,
怎么搞一个合理的评分数呢?
对差值的绝对值进行打分
|x1-x2|=0 得14分(28的一半)
|x1-x2|>=14 得 0分
就是:|差值|>14 得0分,|差值|<=14,得 14-|差值|
满分 14X28 分, 这样对28个排名,就可以算出得分了
相似度=得分/(14x28) X 100 (%)
c语言编个计算小程序很简单。

㈣ 两段语音相似度对比,什么算法识别率高

可以用两个语音软件测试测试,说出同样的一段话就好了,就知道哪个语音识别率好了,就像录音转文字助手就可以把语音转换成文字。


点开里边的录音识别功能,说出你要测试的语音,就可以把语音转成文字了,你可以去跟其他的比较一下。

㈤ 如何计算两组数据的相似度

数据文件:x和group,8个个案。x的取值为4.5 5.6 7.9 5.2 4.6 5.4 6.4 6.2,group的取值为 1=A组,2=B组。
操作:菜单选择
Analyze
Compare Means
Independent-Samples T Test
把x放入Test Variable(s)栏中,把group放入Grouping Variable,单击Define Groups,分别输入1,2,单击Continue按钮返回,单击OK按钮运行。
得t=0.178,P=0.865>0.05,2组数据间无差异。

㈥ 关联规则算法怎么刻画相似度

关联规则原始的定义里面并没有相似度的概念
只有支持度和置信度,
支持度 (A->B )=P(AB) 就是AB出现的概率
支持度 (A->B )=P(B|A) 就是A发生条件下B发生的概率。
相似度公式cosine (A->B) = P(AB)/√P(A)P(B)
不知道是不是你要的

㈦ 如何计算网站网页相似度

据统计,网页上的大部分相同的页面占29%,而主体内容完全相同的占22%,这些重复网页有的是没有一点改动的拷贝,有的在内容上稍作修改,比如同一文章的不同版本,一个新一点,一个老一点,有的则仅仅是网页的格式不同(如 HTML, Postscript),文献[Models and Algorithms for Duplicate Document Detection 1999年]将内容重复归结为以下四个类型:
1.如果2篇文档内容和格式上毫无差别,则这种重复叫做full-layout plicate。
2.如果2篇文档内容相同,但是格式不同,则叫做full-content plicates
3.如果2篇文档有部分重要的内容相同,并且格式相同,则称为partial-layout plicates
4.如果2篇文档有部分重要的内容相同,但是格式不同,则称为partial-content plicates
网页去重的任务就是去掉网页中主题内容重复的部分。它和网页净化(noise rection),反作弊(antispam) 是搜索引擎的3大门神
去重在我看来起码有四好处:减少存储;增强检索效率;增强用户的体验;死链的另一种解决方案。
目前从网络的搜索结果来看,去重工作做的不是很完善,一方面可能是技术难度(precision和recall都超过90%还是很难的);另一方面可能是重复的界定,比如转载算不算重复?所以另一项附属的工作是对个人可写的页面(PWP)进行特殊的处理,那么随之而来的工作就是识别PWP页面。^_^这里就不扯远呢。
问题如何解决?
网页的deplication,我们的算法应该是从最简单的开始,最朴素的算法当然是
对文档进行两两比较,如果A和B比较,如果相似就去掉其中一个
然而这个朴素的算法,存在几个没有解决的问题:
0.要解决问题是什么?full-layout?full-content?partial-layout还是partial-content?
1. 怎么度量A 和 B的相似程度
2. 去掉A还是去掉B,如果A ~B(~表相似,!~表示不相似),B~C 但是 A!~C,去掉B的话,C就去不掉。另一个更深入的问题是,算法的复杂度是多少?假设文档数为n,文档平均长度为m,如果相似度计算复杂度为m的某一个复杂度函数:T=T(m),文档两两比较的复杂度是O(n^2),合起来是O(n^2 * T(m)) . 这个复杂度是相当高的,想搜索引擎这样处理海量数据的系统,这样的复杂度是完全不能接受的,所有,另外三个问题是:
3. 如何降低相似度计算的复杂化度
4. 如何减少文档比较的复杂度
5. 超大数据集该如何处理
第0个问题是,我们要解决的关键,不同的问题有不同的解决方法,从网页的角度来看,结构的重复并不能代表是重复,比如产品展示页面,不同的产品展示页面就有相同的文档结构。内容来看,复制网站会拷贝其他网站的主要内容,然后加些广告或做些修改。所以,解决的问题是,partial-content deplication,那么首先要抽取网页的主体内容。算法变成:
抽取文档主体内容,两两比较内容的相似性,如果A和B相似,去掉其中一个
其次,问题2依赖于问题1的相似度度量,如果度量函数具有传递性,那么问题2就不存在了,如果没有传递性,我们的方法是什么呢?哦,那就找一个关系,把相似关系传递开嘛,简单,聚类嘛,我们的框架可以改成:
抽取文档主体内容,两两比较内容的相似性,如果A和B相似,把他们聚类在一起,最后一个类里保留一个page
最后,归纳为几个步骤
第一步:识别页面的主题内容,网页净化的一部分,以后讨论
第二步:计算相似度
第三步:聚类算法,计算出文档那些文档是相似的,归类。
核心的问题是,“如何计算相似度?”这里很容易想到的是
1. 计算内容的编辑距离edit distance(方法很有名,但是复杂度太高)
2. 把内容分成一个个的token,然后用集合的jaccard度量(好主意,但是页面内容太多,能不能减少啊?)
好吧,但是,当然可以减少集合的个数呢,采样,抽取满足性质的token就可以啦,如满足 mod m =0 的token,比如有实词?比如stopwords。真是绝妙的注意.在把所有的idea放一起前,突然灵光一现,啊哈,
3. 计算内容的信息指纹,参考google研究员吴军的数学之美系列。
把他们放在一起:
第一步:识别页面的主题内容,网页净化的一部分,以后讨论
第二步:提取页面的特征。将文章切分为重合和或不重合的几个结合,hash out
第三步:用相似度度量来计算集合的相似性,包括用信息指纹,Jaccard集合相似度量,random projection等。
第四步:聚类算法,计算出文档那些文档是相似的,归类。
方法分类:
按照利用的信息,现有方法可以分为以下三类
1.只是利用内容计算相似
2.结合内容和链接关系计算相似
3.结合内容,链接关系以及url文字进行相似计算
一般为内容重复的去重,实际上有些网页是
按照特征提取的粒度现有方法可以分为以下三类
1.按照单词这个级别的粒度进行特征提取.
2.按照SHINGLE这个级别的粒度进行特征提取.SHNGLE是若干个连续出现的单词,级别处于文档和单词之间,比文档粒度小,比单词粒度大.
3.按照整个文档这个级别的粒度进行特征提取
算法-具体见真知
1. I-Match
2. Shingling
3. Locality Sensitive Hashing.(SimHash)
4. SpotSigs
5. Combined

㈧ 相似度计算

你是求一个相似度算法:
如果一个公司真实排名为x1,
而你的打分排名是
x2,
怎么搞一个合理的评分数呢?
对差值的绝对值进行打分
|x1-x2|=0
得14分(28的一半)
|x1-x2|>=14

0分
就是:|差值|>14
得0分,|差值|<=14,得
14-|差值|
满分
14x28
分,
这样对28个排名,就可以算出得分了
相似度=得分/(14x28)
x
100
(%)
用c语言编个计算小程序很简单。

㈨ 相似度的计算 用哪个算法 协同过滤 算法

SIM = Structural SIMilarity(结构相似性),这是一种用来评测图像质量的一种方法。由于人类视觉很容易从图像中抽取出结构信息,因此计算两幅图像结构信息的相似性就可以用来作为一种检测图像质量的好坏.

首先结构信息不应该受到照明的影响,因此在计算结构信息时需要去掉亮度信息,即需要减掉图像的均值;其次结构信息不应该受到图像对比度的影响,因此计算结构信息时需要归一化图像的方差;最后我们就可以对图像求取结构信息了,通常我们可以简单地计算一下这两幅处理后的图像的相关系数.

然而图像质量的好坏也受到亮度信息和对比度信息的制约,因此在计算图像质量好坏时,在考虑结构信息的同时也需要考虑这两者的影响.通常使用的计算方法如下,其中C1,C2,C3用来增加计算结果的稳定性:
2u(x)u(y) + C1
L(X,Y) = ------------------------ ,u(x), u(y)为图像的均值
u(x)^2 + u(y)^2 + C1

2d(x)d(y) + C2
C(X,Y) = ------------------------,d(x),d(y)为图像的方差
d(x)^2 + d(y)^2 + C2

d(x,y) + C3
S(X,Y) = ----------------------,d(x,y)为图像x,y的协方差
d(x)d(y) + C3

而图像质量Q = [L(X,Y)^a] x [C(X,Y)^b] x [S(X,Y)^c],其中a,b,c分别用来控制三个要素的重要性,为了计算方便可以均选择为1,C1,C2,C3为比较小的数值,通常C1=(K1 x L)^2, C2=(K2 xL)^2, C3 = C2/2, K1

㈩ 如何实现两个声音相似度匹配算法

作为自然语言理解的一项基础工作,词语语义相似度度量一直是研究的重点。语义相似度度量本身是一个中间任务,它是大多数自然语言处理任务中一个必不可少的中间层次,在自然语言处理中有着广泛的应用,如词义消歧、信息检索以及机器翻译等。 本文的核心内容是汉语词语语义相似度算法研究以及如何将其应用于跨语言信息检索(Cross-Language Information Retrieval, CLIR)领域。首先对语义相似度度量算法进行综述,然后重点描述基于HowNet的语义相似度度量算法,提出根据知识词典描述语言(Knowledge Dictionary Mark-up Language, KDML)的结构特性将词语语义相似度分为三部分进行计算,每部分采用最大匹配的算法,同时加入义原深度信息以区别对待不同信息含量的义原。较以往同类算法,其计算结果具有区分度,更加符合人的主观感觉。 本文尝试将所建立的汉语语义相似度度量模式应用于跨语言信息检索系统。跨语言信息检索结合传统文本信息检索技术和机器翻译技术,在多方面涉及到语义问题,是语义相似度良好的切入点。两者的结合主要体现在两方面:(1)将语义相似度度量应用于查询翻译,利用语义相似度对查询关键词进行消歧翻译,提高翻译质量;(2)将语义相似度应用于查询扩展,使扩展内容与原查询具有更高相关性,以提高检索的召回率和准确率。 本文提出相对客观的评价标准,如为单独衡量词义消歧的性能,而使用第三届词义消歧系统评价会议(The 3rd Evaluating Word Sense Disambiguation Systems, SENSEVAL-3)语料进行测试;为衡量应用语义相似度于跨语言检索后的性能,又使用第九届文本检索会议(The 9th Text Retrieval Conference, TREC-9) CLIR评价任务的查询集、语料库和结果集进行评估。这使得我们的实验结果相对公正客观,具有一定可比性。本文对原有英汉跨语言信息检索系统进行一定程度的改进,使得各种相关算法都可方便地在系统中进行集成,成为一个研究跨语言信息检索的实验平台,其系统的设计思想充分体现模块化和扩展性。 综上,本文通过综合分析主流的语义相似度算法,而提出一种新的基于HowNet的汉语语义相似度算法,并给出其在英汉跨语言信息检索中的尝试性应用,希望能给相关领域的研究者有所借鉴。

热点内容
excel隐藏工作表加密 发布:2024-11-15 23:55:41 浏览:451
十大挖掘算法 发布:2024-11-15 23:55:41 浏览:133
隐藏文件夹如何打开 发布:2024-11-15 23:55:02 浏览:698
为什么安卓没法下载神武4 发布:2024-11-15 23:46:18 浏览:335
巫师3和英雄联盟哪个吃配置 发布:2024-11-15 23:46:10 浏览:805
qt文件加密 发布:2024-11-15 23:40:35 浏览:738
咸阳做脚本的 发布:2024-11-15 23:38:57 浏览:773
途观与探岳哪个配置高 发布:2024-11-15 23:30:39 浏览:518
dhcp服务器如何更新ip地址 发布:2024-11-15 23:18:40 浏览:126
ai清除缓存 发布:2024-11-15 23:12:38 浏览:603