当前位置:首页 » 操作系统 » 线增强算法

线增强算法

发布时间: 2022-07-04 11:36:02

㈠ 网线太长,怎么增强信号

1、更换网线类型

我们常用的网线都是5类网线,所以网线的范围较小,如果需要增强信号,可以选择使用超五类网线或者六类网线,超5类网线、6类网线可以延长信号的传输距离,在同等网线长度下,比普通网线的信号质量好了;

2、使用交换器或者路由器

网线太长信号不好,可以在网线中间串接交换机或者路由器,也可以有效增强信号,延长传输距离。

在距第一台交换机150米左右加装另一台交换机,在300米处加转第二台交换机,以此类推知道达到施工要求。交换机桥接的有点是成本低,施工简便。缺点是一般只能增加三层交换,距离限制在500米以内。

3、使用网络信号放大器

我们还可以使用网络信号放大器增强信号,优点是即插即用无需线路的改动,缺点是成本高,距离一般不超过300米。

㈡ 卷积增强算法

遥感图像上的线性特征,特别是和地质构造和成矿环境有关的线性体和断裂构造的增强处理和分析是遥感图像处理和研究的一个重要方面。对数字图像而言,线性体信息提取目前主要有梯度阈值法(Xu,1981)、模板卷积法(Coupland,1981)、超曲面拟合法(Chitti-neni,1982)、曲线追踪和区域生长(Risse,1989;Pavlidis,1990)等,地质遥感线性体信息提取采用模板卷积滤波算法效果较好,它是一种邻域处理技术,即通过一定尺寸的模板(矩阵)对原图像进行卷积运算来实现的。以3×3(像元)的模板为例,即相当于把模板逐次放在每一个像元上,计算模板元素和对应像元亮度值的乘积和,用数学式可表示为

西天山吐拉苏盆地与火山岩有关的金矿遥感找矿研究

式中:mi为模板元素值;gi为相应图像中各像元的亮度值;f为卷积值,就是滤波后(模板)中心像元的输出值。

㈢ 图像增强的常用方法有哪些

图像增强可分成两大类:频率域法和空间域法。
前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。
后者空间域法中具有代表性的算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
方法
图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。
在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。图像增强技术根据增强处理过程所在的空间不同,可分为基于空域的算法和基于频域的算法两大类。
灰度变换主要针对独立的像素点进行处理,由输入像素点的灰度值决定相应的输出像素点的灰度值,通过改变原始图像数据所占的灰度范围而使图像在视觉上得到改善。

1.1 线性灰度增强

线性灰度增强,将图像中所有点的灰度按照线性灰度变换函数进行变换。在曝光不足或过度的情况下,图像的灰度可能局限在一个很小的灰度范围内,这时图像可能会很模糊不清。利用一个线性单值函数对图像内的每一个像素做线性拓展,将会有效地改善图像的视觉效果。

㈣ 数据增强的方法有哪些

1 什么是数据增强?

数据增强也叫数据扩增,意思是在不实质性的增加数据的情况下,让有限的数据产生等价于更多数据的价值。

比如上图,第1列是原图,后面3列是对第1列作一些随机的裁剪、旋转操作得来。

每张图对于网络来说都是不同的输入,加上原图就将数据扩充到原来的10倍。假如我们输入网络的图片的分辨率大小是256×256,若采用随机裁剪成224×224的方式,那么一张图最多可以产生32×32张不同的图,数据量扩充将近1000倍。虽然许多的图相似度太高,实际的效果并不等价,但仅仅是这样简单的一个操作,效果已经非凡了。

如果再辅助其他的数据增强方法,将获得更好的多样性,这就是数据增强的本质。

数据增强可以分为,有监督的数据增强和无监督的数据增强方法。其中有监督的数据增强又可以分为单样本数据增强和多样本数据增强方法,无监督的数据增强分为生成新的数据和学习增强策略两个方向。

2 有监督的数据增强

有监督数据增强,即采用预设的数据变换规则,在已有数据的基础上进行数据的扩增,包含单样本数据增强和多样本数据增强,其中单样本又包括几何操作类,颜色变换类。

2.1. 单样本数据增强

所谓单样本数据增强,即增强一个样本的时候,全部围绕着该样本本身进行操作,包括几何变换类,颜色变换类等。

(1) 几何变换类

几何变换类即对图像进行几何变换,包括翻转,旋转,裁剪,变形,缩放等各类操作,下面展示其中的若干个操作。

水平翻转和垂直翻转

随机旋转

随机裁剪

变形缩放

翻转操作和旋转操作,对于那些对方向不敏感的任务,比如图像分类,都是很常见的操作,在caffe等框架中翻转对应的就是mirror操作。

翻转和旋转不改变图像的大小,而裁剪会改变图像的大小。通常在训练的时候会采用随机裁剪的方法,在测试的时候选择裁剪中间部分或者不裁剪。值得注意的是,在一些竞赛中进行模型测试时,一般都是裁剪输入的多个版本然后将结果进行融合,对预测的改进效果非常明显。

以上操作都不会产生失真,而缩放变形则是失真的。

很多的时候,网络的训练输入大小是固定的,但是数据集中的图像却大小不一,此时就可以选择上面的裁剪成固定大小输入或者缩放到网络的输入大小的方案,后者就会产生失真,通常效果比前者差。

(2) 颜色变换类

上面的几何变换类操作,没有改变图像本身的内容,它可能是选择了图像的一部分或者对像素进行了重分布。如果要改变图像本身的内容,就属于颜色变换类的数据增强了,常见的包括噪声、模糊、颜色变换、擦除、填充等等。

基于噪声的数据增强就是在原来的图片的基础上,随机叠加一些噪声,最常见的做法就是高斯噪声。更复杂一点的就是在面积大小可选定、位置随机的矩形区域上丢弃像素产生黑色矩形块,从而产生一些彩色噪声,以Coarse Dropout方法为代表,甚至还可以对图片上随机选取一块区域并擦除图像信息。

添加Coarse Dropout噪声

颜色变换的另一个重要变换是颜色扰动,就是在某一个颜色空间通过增加或减少某些颜色分量,或者更改颜色通道的顺序。

颜色扰动

还有一些颜色变换,本文就不再详述。

几何变换类,颜色变换类的数据增强方法细致数还有非常多,推荐给大家一个git项目:

https://github.com/aleju/imgaug

预览一下它能完成的数据增强操作吧。

2.2. 多样本数据增强

不同于单样本数据增强,多样本数据增强方法利用多个样本来产生新的样本,下面介绍几种方法。

(1) SMOTE[1]

SMOTE即Synthetic Minority Over-sampling Technique方法,它是通过人工合成新样本来处理样本不平衡问题,从而提升分类器性能。

类不平衡现象是很常见的,它指的是数据集中各类别数量不近似相等。如果样本类别之间相差很大,会影响分类器的分类效果。假设小样本数据数量极少,如仅占总体的1%,则即使小样本被错误地全部识别为大样本,在经验风险最小化策略下的分类器识别准确率仍能达到99%,但由于没有学习到小样本的特征,实际分类效果就会很差。

SMOTE方法是基于插值的方法,它可以为小样本类合成新的样本,主要流程为:

第一步,定义好特征空间,将每个样本对应到特征空间中的某一点,根据样本不平衡比例确定好一个采样倍率N;

第二步,对每一个小样本类样本(x,y),按欧氏距离找出K个最近邻样本,从中随机选取一个样本点,假设选择的近邻点为(xn,yn)。在特征空间中样本点与最近邻样本点的连线段上随机选取一点作为新样本点,满足以下公式:

第三步,重复以上的步骤,直到大、小样本数量平衡。

该方法的示意图如下。

python中,SMOTE算法已经封装到了imbalanced-learn库中,如下图为算法实现的数据增强的实例,左图为原始数据特征空间图,右图为SMOTE算法处理后的特征空间图。

(2) SamplePairing[2]

SamplePairing方法的原理非常简单,从训练集中随机抽取两张图片分别经过基础数据增强操作(如随机翻转等)处理后经像素以取平均值的形式叠加合成一个新的样本,标签为原样本标签中的一种。这两张图片甚至不限制为同一类别,这种方法对于医学图像比较有效。

经SamplePairing处理后可使训练集的规模从N扩增到N×N。实验结果表明,因SamplePairing数据增强操作可能引入不同标签的训练样本,导致在各数据集上使用SamplePairing训练的误差明显增加,而在验证集上误差则有较大幅度降低。

尽管SamplePairing思路简单,性能上提升效果可观,符合奥卡姆剃刀原理,但遗憾的是可解释性不强。

(3) mixup[3]

mixup是Facebook人工智能研究院和MIT在“Beyond Empirical Risk Minimization”中提出的基于邻域风险最小化原则的数据增强方法,它使用线性插值得到新样本数据。

令(xn,yn)是插值生成的新数据,(xi,yi)和(xj,yj)是训练集随机选取的两个数据,则数据生成方式如下

λ的取值范围介于0到1。提出mixup方法的作者们做了丰富的实验,实验结果表明可以改进深度学习模型在ImageNet数据集、CIFAR数据集、语音数据集和表格数据集中的泛化误差,降低模型对已损坏标签的记忆,增强模型对对抗样本的鲁棒性和训练生成对抗网络的稳定性。

SMOTE,SamplePairing,mixup三者思路上有相同之处,都是试图将离散样本点连续化来拟合真实样本分布,不过所增加的样本点在特征空间中仍位于已知小样本点所围成的区域内。如果能够在给定范围之外适当插值,也许能实现更好的数据增强效果。

3 无监督的数据增强

无监督的数据增强方法包括两类:

(1) 通过模型学习数据的分布,随机生成与训练数据集分布一致的图片,代表方法GAN[4]。

(2) 通过模型,学习出适合当前任务的数据增强方法,代表方法AutoAugment[5]。

3.1 GAN

关于GAN(generative adversarial networks),我们已经说的太多了。它包含两个网络,一个是生成网络,一个是对抗网络,基本原理如下:

(1) G是一个生成图片的网络,它接收随机的噪声z,通过噪声生成图片,记做G(z) 。

(2) D是一个判别网络,判别一张图片是不是“真实的”,即是真实的图片,还是由G生成的图片。

GAN的以假乱真能力就不多说了。

2 Autoaugmentation[5]

AutoAugment是Google提出的自动选择最优数据增强方案的研究,这是无监督数据增强的重要研究方向。它的基本思路是使用增强学习从数据本身寻找最佳图像变换策略,对于不同的任务学习不同的增强方法,流程如下:

(1) 准备16个常用的数据增强操作。

(2) 从16个中选择5个操作,随机产生使用该操作的概率和相应的幅度,将其称为一个sub-policy,一共产生5个sub-polices。

(3) 对训练过程中每一个batch的图片,随机采用5个sub-polices操作中的一种。

(4) 通过模型在验证集上的泛化能力来反馈,使用的优化方法是增强学习方法。

(5) 经过80~100个epoch后网络开始学习到有效的sub-policies。

(6) 之后串接这5个sub-policies,然后再进行最后的训练。

总的来说,就是学习已有数据增强的组合策略,对于门牌数字识别等任务,研究表明剪切和平移等几何变换能够获得最佳效果。

㈤ 图像处理的增强复原

图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。
图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。
早期的数字图像复原亦来自频率域的概念。现代采取的是一种代数的方法,即通过解一个大的方程组来复原理想的图片。
以提高图像质量为目的的图像增强和复原对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用电子显微镜或X光拍摄的生物医疗图片等。
图像增强使图像清晰或将其转换为更适合人或机器分析的形式。与图像复原不同,图像增强并不要求忠实地反映原始图像。相反,含有某种失真(例如突出轮廓线)的图像可能比无失真的原始图像更为清晰。常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。
图像复原除去或减少在获得图像过程中因各种原因产生的退化。这类原因可能是光学系统的像差或离焦、摄像系统与被摄物之间的相对运动、电子或光学系统的噪声和介于摄像系统与被摄像物间的大气湍流等。图像复原常用二种方法。当不知道图像本身的性质时,可以建立退化源的数学模型,然后施行复原算法除去或减少退化源的影响。当有了关于图像本身的先验知识时,可以建立原始图像的模型,然后在观测到的退化图像中通过检测原始图像而复原图像。
图像分割将图像划分为一些互不重叠的区域,每一区域是像素的一个连续集。通常采用把像素分入特定区域的区域法和寻求区域之间边界的境界法。区域法根据被分割对象与背景的对比度进行阈值运算,将对象从背景中分割出来。有时用固定的阈值不能得到满意的分割,可根据局部的对比度调整阈值,这称为自适应阈值。境界法利用各种边缘检测技术,即根据图像边缘处具有很大的梯度值进行检测。这两种方法都可以利用图像的纹理特性实现图像分割。

㈥ 增强学习算法的学习算法

Q学习算法在确定性回报和动作假定下的Q学习算法:
(s表示状态,a表示动作,Q(s,a)表示对状态s下动作a得到的总体回报的一个估计,r为此动作的立即回报)
1。对每个s,a初始化表项Q(s,a)为0
2。观察当前状态s
3。一直重复做:
选择一个动作a并执行它,该动作为使Q(s,a)最大的a。
接收到立即回报r。
观察新状态s'。
对Q(s',a')按照下式更新表项:
Q(s,a)=r(s,a)+gama * max Q (s',a')。
s=s'。

㈦ 如何评价madVR新的增线算法NGU

gtx1080走起,配合madvr新的放大算法NGU(需要高质量片源) 放大至4k
如果你更在意帧率而不是分辨率,建议买a卡,rx470D/rx470/rx480配合A卡独有的插帧工具插至60fps。
请配合不太差的cpu,大部分情况下,建议软解,因为显卡有其它东西要运算。

㈧ 图像增强的方法有哪些

图像处理技术与机器视觉密切相关,图像在采集过程中不可避免的会受到传感器灵敏度、噪声干扰以及模数转换时量化问题等各种因素的影响,而导致图像无法达到令人满意的视觉效果,为了实现人眼观察或者机器自动分析、识别的目的,对原始图像所做的改善行为,就被称作图像增强。图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。-一般而言,图像增强是根据具体的应用场景和图像的模糊情况而采用特定的增强方法来突出图像中的某些信息,削弱或消除无关信息,以达到强调图像的整体或局部特征的目的。图像增强的方法主要分为两类:空域增强法和频域增强法。空域增强法直接针对图像中的像素,对图像的灰度进行处理;频域增强法是基于图像的Fourier变换式对图像频谱进行改善,增强或抑制所希望的频谱。
常用的图像增强方法有:①灰度等级直方图处理:使加工后的图像在某一灰度范围内有更好的对比度;②干扰抑制:通过低通滤波、多图像平均、施行某类空间域算子等处理,抑制叠加在图像上的随机性干扰;③边缘锐化:通过高通滤波、差分运算或某种变换,使图形的轮廓线增强;④伪彩色处理:将黑白图像转换为彩色图像,从而使人们易于分析和检测图像包含的信息。由于对图像质量的要求越来越高,单一的增强处理往往难以达到令人满意的效果。因此,在图像的实际增强处理中,常常是几种方法组合运用,各取所长以达到最佳的增强效果。

㈨ 关于图像增强算法的问题

几种方法结合使用。一般先做中值滤波、图像平滑,这些属于图像预处理,然后考虑进行锐化、变换等其他手段。
这些你挨个试,就明白了。

热点内容
密码锁如何密码解锁 发布:2025-01-25 04:25:16 浏览:385
ebay如何上传产品 发布:2025-01-25 04:04:37 浏览:823
java判断是否手机访问权限 发布:2025-01-25 04:02:28 浏览:807
天龙八部3困难福地需要什么配置 发布:2025-01-25 04:01:49 浏览:409
phpmysql网站源码 发布:2025-01-25 03:56:49 浏览:755
安卓手机华为手机哪个牌子好 发布:2025-01-25 03:55:55 浏览:25
比亚迪发动机压缩比 发布:2025-01-25 03:55:16 浏览:329
全民小视频脚本 发布:2025-01-25 03:54:28 浏览:926
鹦鹉linux 发布:2025-01-25 03:44:02 浏览:197
python如何抛出异常 发布:2025-01-25 03:40:27 浏览:985