当前位置:首页 » 操作系统 » 蚁群算法及其应用pdf

蚁群算法及其应用pdf

发布时间: 2022-07-03 17:27:49

❶ 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪些问题!

概念:蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值

其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序

应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内

引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点: 1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来。我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力。正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了。 引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合。如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水。这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整。 既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化。而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合。而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了! 蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝。 其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了。

具体参考http://ke..com/view/539346.htm
希望对你有帮助,谢谢。

❷ 蚁群算法的应用范围

蚁群算法的应用非常广泛,包括:数据挖掘,模糊建模,群体智能,聚类分析,网络路由优化,物流配送车辆调度及无线传感器网络。其中的应用都有很多成功的实例。

❸ 蚁群算法的内容

蚁群算法又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

神经网络
思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:
(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。
遗传算法,是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它最初由美国Michigan大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专着《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Holland教授所提出的GA通常为简单遗传算法(SGA)。

❹ 蚁群算法及其应用的内容简介

蚁群算法是意大利学者Dorigo等人于1991年创立的,是继神经网络、遗传算法、免疫算法之后的又一种新兴的启发式搜索算法。蚂蚁群体是一种社会性昆虫,它们有组织、有分工,还有通讯系统,它们相互协作,能完成从蚁穴到食物源寻找最短路径的复杂任务。模拟蚂蚁群体智能的人工蚁群算法具有分布计算、信息正反馈和启发式搜索的特点,不仅在求解组合优化问题中获得广泛应用,而且也用于连续时间系统的优化。
本书是国内首部蚁群算法的专着,系统地阐述蚁群算法的基本原理、基本蚁群算法及改进算法,蚁群算法与遗传、免疫算法的融合,自适应蚁群算法,并行蚁群算法,蚁群算法的收敛性与理论模型及其在优化问题中的应用。

❺ 蚁群算法及其应用的作者简介

李士勇,哈尔滨工业大学教授,博士生导师.1967年毕业于哈尔滨工业大学,1983年获工学硕士学位1992年至1993年在日本千叶工业大学从事模糊控制、神经网络和智能控制研究工作,黑龙江省优秀专家,国家模糊控制技术生产力促进中心专家,中国自动化学会智能自动化专业委员会委员,《计算机测量与控制》杂志编委,获国家级奖2项,省、部级奖6项,发表论文80余篇,编着教材与专着4部,《模糊控制·神经控制和智能控制论》荣获全国优秀科技图书奖,并跻身于十大领域中国论文被引频次最高的前50部专着与译着排行榜。目前主要从事模糊控制、神经控制、智能控制、智能优化算法、非线性科学与复杂系统理论及其应用的研究与教学工作。

❻ 蚁群算法的介绍

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

❼ 蚁群优化算法的使用-编码的问题!

“蚁群算法”学习包下载

下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)

近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。

如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。

以下是文件列表,全是 PDF 格式的:

基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统

❽ 蚁群算法及其应用的目录

第1章绪论
1.1蚂蚁的基本习性
1.1.1蚂蚁的信息系统
1.1.2蚁群社会的遗传与进化
1.2蚁群觅食行为与觅食策略
1.2.1蚂蚁的觅食行为
1.2.2蚂蚁的觅食策略
1.3人工蚁群算法的基本思想
1.3.1人工蚁与真实蚂蚁的异同
1.3.2人工蚁群算法的实现过程
1.4蚁群优化算法的意义及应用
1.4.1蚁群优化算法的意义
l.4.2蚁群算法的应用
1.5蚁群算法的展望
第2章蚂蚁系统——蚁群算法的原型
2.1蚂蚁系统模型的建立
2.2蚁量系统和蚁密系统的模型
2.3蚁周系统模型
第3章改进的蚁群优化算法
3.1带精英策略的蚂蚁系统
3.2基于优化排序的蚂蚁系统
3.3蚁群系统
3.3.1蚁群系统状态转移规则
3.3.2蚁群系统全局更新规则
3.3.3蚁群系统局部更新规则
3.3.4候选集合策略
3.4最大一最小蚂蚁系统
3.4.1信息素轨迹更新
3.4.2信息素轨迹的限制
3.4.3信息素轨迹的初始化
3.4.4信息素轨迹的平滑化
3.5最优一最差蚂蚁系统
3.5.1最优一最差蚂蚁系统的基本思想
3.5.2最优一最差蚂蚁系统的工作过程
第4章蚁群优化算法的仿真研究
4.1蚂蚁系统三类模型的仿真研究
4.1.1三类模型性能的比较
4.2.2基于统计的参数优化
4.2基于蚁群系统模型的仿真研究
4.2.1局部优化算法的有效性
4.2.2蚁群系统与其他启发算法的比较
4.3最大一最小蚂蚁系统的仿真研究
4.3.1信息素轨迹初始化研究
4.3.2信息素轨迹量下限的作用
4.3.3蚁群算法的对比
4.4最优一最差蚂蚁系统的仿真研究
4.4.1参数ε的设置
4.4.2几种改进的蚁群算法比较
第5章蚁群算法与遗传、模拟退火算法的对比
5.1遗传算法
5.1.1遗传算法与自然选择
5.1.2遗传算法的基本步骤
5.1.3旅行商问题的遗传算法实现
5.2模拟退火算法
5.2.1物理退火过程和Metroplis准则
5.2.2模拟退火法的基本原理
5.3蚁群算法与遗传算法、模拟退火算法的比较
5.3.1三种算法的优化质量比较
5.3.2三种算法收敛速度比较
5.3.3三种算法的特点与比较分析
第6章蚁群算法与遗传、免疫算法的融合
6.1遗传算法与蚂蚁算法融合的GAAA算法
6.1.1遗传算法与蚂蚁算法融合的基本思想
……
第7章自适应蚁群算法
第8章并行蚁群算法
第9章蚁群算法的收敛性与蚁群行为模型
第10章蚁群算法在优化问题中的应用
附录
参考文献

❾ 蚁群优化算法的蚁群优化算法

开本: 16开
所属分类: 图书 >> 计算机/网络 >> 人工智能
定价:¥43.00 主要内容包括蚁群算法基本原理、蚁群算法在TSP及其扩展问题求解中的应用、蚁群算法在VRP及其扩展问题求解中的应用、蚁群算法在最优树问题求解中的应用、蚁群算法在整数规划问题求解中的应用、一般连续优化问题的蚁群算法以及多目标蚁群算法等。书中还给出了一些主要算法的Delphi程序实现源代码,可供参考或修改使用。
本书可供运筹学、管理科学、系统工程、计算机科学等有关专业的高校师生、科研人员和工程技术人员阅读参考。

❿ 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪

蚁群算法及其应用可供人工智能、计算机科学、信息科学、控制工程、管理工程、交通工程、网络工程、智能优化算法及智能自动化等领域的广大师生和科技人员学习及参考。

热点内容
领航s1配置怎么样 发布:2025-01-26 09:58:10 浏览:763
公司局域网搭建服务器搭建 发布:2025-01-26 09:16:56 浏览:433
android裁剪圆形图片 发布:2025-01-26 09:05:56 浏览:411
小贷源码 发布:2025-01-26 08:20:58 浏览:536
更换电脑名登录服务器 发布:2025-01-26 07:56:52 浏览:240
后台phpjava 发布:2025-01-26 07:12:34 浏览:657
微信解绑密码是什么 发布:2025-01-26 06:50:07 浏览:734
app如何访问服务器 发布:2025-01-26 06:36:56 浏览:741
拳皇安卓单机哪里下载 发布:2025-01-26 06:30:46 浏览:539
注册会员时积分消费密码是什么 发布:2025-01-26 06:30:45 浏览:247