有几种算法
A. 常见的搜索算法有哪几种
广度优先搜索(BFS)
深度优先搜索(DFS)
爬山法(Hill Climbing)
最佳优先算法(Best-first search strategy)
回溯法 (Backtracking)
分支限界算法(Branch-and-bound Search Algorithm)
B. 数学简便计算,有哪几种方法
简便计算主要有三大方法,分别是加减凑整、分组凑整、提公因数法。
它采用数学计算中的拆分凑整思想,通过四则运算规律,从而简化计算。
就像68+77=?
大多数人不一定立刻能算出结果,
如果换成70+75=?
相信每一个人都可以一口算出和是145。
这里其实就是把77拆分成2+75,
68+77
=68+2+75
=70+75
=145
遇见复杂的计算式时,
先观察有没有可能凑整,
凑成整十整百之后再进行计算,
不仅简便,而且避免计算出错。
①加减凑整
【例题1】999+99+29+9+4=?
题中999,99,29,9这四个数字与整数1000,100,30,10都是相差1,4就可以拆分成1+1+1+1,把这4个1补到999,99,29,9上,原式就可以简化成:
999+99+29+9+4
=999+99+29+9+1+1+1+1
=999+1+99+1+29+1+9+1
=1000+100+30+10
=1140
【例题2】5999+499+299+19=?
看完例1,再来看看例2,还是末位都是9,自然要用我们的凑整法了,不过稍有不同,因为例2中没有4来拆分成1+1+1+1。
没有枪没有炮,自己去创造!
先把它加上1+1+1+1,然后再减去4,不就相当于式子加了一个0吗?
5999+499+299+19
=5999+1+499+1+299+1+19+1-4
=6000+500+300+20-4
=6816
②分组凑整
在只有加减法的计算题中,将算式中的各项重新分下组凑整,也可以使计算非常方便。
【例题3】100-95+92-89+86-83+80-77=?
题目中的两位数加减混合运算,硬算是非常费劲的,但是似乎又不能拆分凑整,再观察题目可以发现从第2个数95起,后面的数都比前一个小3。
根据加法减法运算性质,我们给相邻的项加上括号。
100-95+92-89+86-83+80-77
=(100-95)+(92-89)+(86-83)+(80-77)
=5+3+3+3
=14
凑整法不仅可以用在加减计算中,乘除加减混合运算也常常会考到。
③提取公因数法
这就需要用到乘法分配律提取公因数,
又称为提取公因数法。
如果没有公因数,我们可以采取乘法结合律变化出公因数。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。
【例题4】47.9x6.6+529x0.34=?
很明显题目中的6.6+3.4=10,我们想办法凑出一个3.4,这就用到了a×b=(a×10)×(b÷10)。但是即使10凑出来,仍然不能提取公因数来简便计算,这就得用到乘法分配律,52.9x3.4=(47.9+5)x3.4,创造出一个47.9,方便我们提取公因数。
47.9x6.6+529x0.34
=47.9x6.6+529÷10x10x0.34
=47.9x6.6+(47.9+5)x3.4
=47.9x(6.6+3.4)+17
=496
简便计算的考察重点在于四则运算规律的灵活运用,方法掌握的基础上,对于四则运算规律必须牢记在心,才能更好地理解运用。
C. java中的算法,一共有多少种,哪几种,怎么分类。
就好比问,汉语中常用写作方法有多少种,怎么分类。
算法按用途分,体现设计目的、有什么特点
算法按实现方式分,有递归、迭代、平行、序列、过程、确定、不确定等等
算法按设计范型分,有分治、动态、贪心、线性、图论、简化等等
作为图灵完备的语言,理论上”Java语言“可以实现所有算法。
“Java的标准库'中用了一些常用数据结构和相关算法.
像apache common这样的java库中又提供了一些通用的算法
D. 80—20—30有几种算法
一共有三种算法,分别是:
第一种算法:80—20—30=60—30=30,第二种算法:80—20—30=80—(20+30)=80—50=30
第三种算法:80—20—30=80—30—20=50—20=30
E. 什么叫算法算法有哪几种表示方法
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。计算机科学家往往将“算法”一词的含义限定为此类“符号算法”。“算法”概念的初步定义:一个算法是解决一个问题的进程。而并不需要每次都发明一个解决方案。
已知的算法有很多,例如“分治法”、“枚举测试法”、“贪心算法”、“随机算法”等。
(5)有几种算法扩展阅读
算法中的“分治法”
“分治法”是把一个复杂的问题拆分成两个较为简单的子问题,进而两个子问题又可以分别拆分成另外两个更简单的子问题,以此类推。问题不断被层层拆解。然后,子问题的解被逐层整合,构成了原问题的解。
高德纳曾用过一个邮局分发信件的例子对“分治法”进行了解释:信件根据不同城市区域被分进不同的袋子里;每个邮递员负责投递一个区域的信件,对应每栋楼,将自己负责的信件分装进更小的袋子;每个大楼管理员再将小袋子里的信件分发给对应的公寓。
F. 一年级数学算法有几种
一年级的数学算法应该有4种,也就是加、减、乘和除这4种!
G. 几种常用的算法简介
1、穷举法穷举法是最基本的算法设计策略,其思想是列举出问题所有的可能解,逐一进行判别,找出满足条件的解。
穷举法的运用关键在于解决两个问题:
在运用穷举法时,容易出现的问题是可能解过多,导致算法效率很低,这就需要对列举可能解的方法进行优化。
以题1041--纯素数问题为例,从1000到9999都可以看作是可能解,可以通过对所有这些可能解逐一进行判别,找出其中的纯素数,但只要稍作分析,就会发现其实可以大幅度地降低可能解的范围。根据题意易知,个位只可能是3、5、7,再根据题意可知,可以在3、5、7的基础上,先找出所有的二位纯素数,再在二位纯素数基础上找出三位纯素数,最后在三位纯素数的基础上找出所有的四位纯素数。
2、分治法分治法也是应用非常广泛的一种算法设计策略,其思想是将问题分解为若干子问题,从而可以递归地求解各子问题,再综合出问题的解。
分治法的运用关键在于解决三个问题:
我们熟知的如汉诺塔问题、折半查找算法、快速排序算法等都是分治法运用的典型案例。
以题1045--Square
Coins为例,先对题意进行分析,可设一个函数f(m,
n)等于用面值不超过n2的货币构成总值为m的方案数,则容易推导出:
f(m,
n)
=
f(m-0*n*n,
n-1)+f(m-1*n*n,
n-1)+f(m-2*n*n,
n-1)+...+f(m-k*n*n,
n-1)
这里的k是币值为n2的货币最多可以用多少枚,即k=m/(n*n)。
也很容易分析出,f(m,
1)
=
f(1,
n)
=
1
对于这样的题目,一旦分析出了递推公式,程序就非常好写了。所以在动手开始写程序之前,分析工作做得越彻底,逻辑描述越准确、简洁,写起程序来就会越容易。
3、动态规划法
动态规划法多用来计算最优问题,动态规划法与分治法的基本思想是一致的,但处理的手法不同。动态规划法在运用时,要先对问题的分治规律进行分析,找出终结子问题,以及子问题向父问题归纳的规则,而算法则直接从终结子问题开始求解,逐层向上归纳,直到归纳出原问题的解。
动态规划法多用于在分治过程中,子问题可能重复出现的情况,在这种情况下,如果按照常规的分治法,自上向下分治求解,则重复出现的子问题就会被重复地求解,从而增大了冗余计算量,降低了求解效率。而采用动态规划法,自底向上求解,每个子问题只计算一次,就可以避免这种重复的求解了。
动态规划法还有另外一种实现形式,即备忘录法。备忘录的基本思想是设立一个称为备忘录的容器,记录已经求得解的子问题及其解。仍然采用与分治法相同的自上向下分治求解的策略,只是对每一个分解出的子问题,先在备忘录中查找该子问题,如果备忘录中已经存在该子问题,则不须再求解,可以从备忘录中直接得到解,否则,对子问题递归求解,且每求得一个子问题的解,都将子问题及解存入备忘录中。
例如,在题1045--Square
Coins中,可以采用分治法求解,也可以采用动态规划法求解,即从f(m,
1)和f(1,
n)出发,逐层向上计算,直到求得f(m,
n)。
在竞赛中,动态规划和备忘录的思想还可以有另一种用法。有些题目中的可能问题数是有限的,而在一次运行中可能需要计算多个测试用例,可以采用备忘录的方法,预先将所有的问题的解记录下来,然后输入一个测试用例,就查备忘录,直接找到答案输出。这在各问题之间存在父子关系的情况下,会更有效。例如,在题1045--Square
Coins中,题目中已经指出了最大的目标币值不超过300,也就是说问题数只有300个,而且各问题的计算中存在重叠的子问题,可以采用动态规划法,将所有问题的解先全部计算出来,再依次输入测试用例数据,并直接输出答案。
4、回溯法回溯法是基于问题状态树搜索的求解法,其可适用范围很广。从某种角度上说,可以把回溯法看作是优化了的穷举法。回溯法的基本思想是逐步构造问题的可能解,一边构造,一边用约束条件进行判别,一旦发现已经不可能构造出满足条件的解了,则退回上一步构造过程,重新进行构造。这个退回的过程,就称之为回溯。
回溯法在运用时,要解决的关键问题在于:
回溯法的经典案例也很多,例如全排列问题、N后问题等。
5、贪心法贪心法也是求解最优问题的常用算法策略,利用贪心法策略所设计的算法,通常效率较高,算法简单。贪心法的基本思想是对问题做出目前看来最好的选择,即贪心选择,并使问题转化为规模更小的子问题。如此迭代,直到子问题可以直接求解。
基于贪心法的经典算法例如:哈夫曼算法、最小生成树算法、最短路径算法等。
H. 算法有哪些分类
算法分类编辑算法可大致分为:
基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。
I. 机器学习有几种算法
1. 线性回归
工作原理:该算法可以按其权重可视化。但问题是,当你无法真正衡量它时,必须通过观察其高度和宽度来做一些猜测。通过这种可视化的分析,可以获取一个结果。
2. 逻辑回归
根据一组独立变量,估计离散值。它通过将数据匹配到logit函数来帮助预测事件。
3. 决策树
利用监督学习算法对问题进行分类。决策树是一种支持工具,它使用树状图来决定决策或可能的后果、机会事件结果、资源成本和实用程序。根据独立变量,将其划分为两个或多个同构集。
4. 支持向量机(SVM)
基本原理(以二维数据为例):如果训练数据是分布在二维平面上的点,它们按照其分类聚集在不同的区域。基于分类边界的分类算法的目标是,通过训练,找到这些分类之间的边界(直线的――称为线性划分,曲线的――称为非线性划分)。对于多维数据(如N维),可以将它们视为N维空间中的点,而分类边界就是N维空间中的面,称为超面(超面比N维空间少一维)。线性分类器使用超平面类型的边界,非线性分类器使用超曲面。
5. 朴素贝叶斯
朴素贝叶斯认为每个特征都是独立于另一个特征的。即使在计算结果的概率时,它也会考虑每一个单独的关系。
它不仅易于使用,而且能有效地使用大量的数据集,甚至超过了高度复杂的分类系统。
6. KNN(K -最近邻)
该算法适用于分类和回归问题。在数据科学行业中,它更常用来解决分类问题。
这个简单的算法能够存储所有可用的案例,并通过对其k近邻的多数投票来对任何新事件进行分类。然后将事件分配给与之匹配最多的类。一个距离函数执行这个测量过程。
7. k – 均值
这种无监督算法用于解决聚类问题。数据集以这样一种方式列在一个特定数量的集群中:所有数据点都是同质的,并且与其他集群中的数据是异构的。
8. 随机森林
利用多棵决策树对样本进行训练并预测的一种分类器被称为随机森林。为了根据其特性来分类一个新对象,每棵决策树都被排序和分类,然后决策树投票给一个特定的类,那些拥有最多选票的被森林所选择。
9. 降维算法
在存储和分析大量数据时,识别多个模式和变量是具有挑战性的。维数简化算法,如决策树、因子分析、缺失值比、随机森林等,有助于寻找相关数据。
10. 梯度提高和算法
这些算法是在处理大量数据,以作出准确和快速的预测时使用的boosting算法。boosting是一种组合学习算法,它结合了几种基本估计量的预测能力,以提高效力和功率。
综上所述,它将所有弱或平均预测因子组合成一个强预测器。
J. 13-9有几种算法
三种算法:
第一种“平十法”
9分成3和6。
13-3=10
10-6=4
第二种“破十法”
10-9=1
1+3=4
第三种“想加算减法”
9+(4)=13
13-9=4