深图数据库
A. 数据库构建流程
构建相山地区地学空间数据库是在对各类原始数据或图件资料进行整理、编辑、处理的基础上,将各类数据或图形进行按空间位置整合的过程。其工作流程见图 2.1。
图2.1 相山地区多源地学空间数据库构建流程
2.2.1 资料收集
相山地区有 40 多年的铀矿勘查和研究历史,积累了大量地质生产或科学研究资料。笔者收集的面上的资料包括原始的离散数据如航空放射性伽玛能谱数据、航磁数据、山地重力测量数据、ETM 数据,而地面高精度磁测资料仅收集到文字报告和图件。上述各类数据均可达到制作 1∶50000 图件的要求。地质图采用 1995 年核工业 270 研究所等单位共同实施完成的 “相山火山岩型富大铀矿找矿模式及攻深方法技术研究”项目的 1∶50000附图; 采用的 1∶50000 地形图的情况见表 2.1。
2.2.2 图层划分
GIS 数据库既要存储和管理属性数据和空间数据,又要存储和管理空间拓扑关系数据。数据层原理: 大多数 GIS 都是将数据按照逻辑类型分成不同的数据层进行组织,即按空间数据逻辑或专业属性分为各种逻辑数据类型或专业数据层。相山地区数字化地质图包括地理要素和地质要素两大部分,共设置 9 个图层,每一图层 (包括点、线或多边形) 自动创建与之相对应的属性表。
表2.1 采用的地形图情况一览表
注: 坐标系均为 1954 年北京坐标系,1956 年黄海高程系,等高距为 10 m。
(1) 水系图层 (L6XS01) : 包括双线河流、单线河流、水库或水塘。
(2) 交通及居民地图层 (L6XS02) : 包括公路和主要自然村及名称。
(3) 地形等高线图层 (L6XS03) : 包括地形等高线及高程和山峰高程点。
(4) 盖层图层 (D6XS04) : 包括第四系 (Q) 和上白垩统南雄组 (K2n) 及其厚度和主要岩性。
(5) 火山岩系图层 (L6XS05) : 包括下白垩统打鼓顶组 (K1d) 、鹅湖岭组 (K1e) 及各种浅成- 超浅成侵入体 (次火山岩体) 的分布和主要岩性特征。
(6) 基底图层 (L6XS06) : 含下三叠统安源组 (T3a) 、震旦系 (Z) 、燕山早期花岗岩 (γ5) 、加里东期花岗岩 (γ3) 。
(7) 构造图层 (L6XS07) : 相山地区褶皱构造不发育,构造图层主要包括实测的和遥感影像解译的线性断裂或环形构造。
(8) 矿产图层 (L6XS08) : 包括大、中、小型铀矿床和矿点。
(9) 图框及图幅基本信息图层 (L6XS09) : 数字化地质图的总体描述,内容包括图框、角点坐标、涉及的 1∶500000 标准图幅编号、调查单位及出版年代等。
图层名编码结构如下:
相山铀矿田多源地学信息示范应用
2.2.3 图形输入
图形输入或称图形数字化,是将图形信息数据化,转变成按一定数据结构及类型组成的数字化图形。MapGIS 提供智能扫描矢量化和数字化两种输入方式。本次采用扫描矢量化输入,按点、线参数表事先设定缺省参数,分别将地形底图和地质底图扫描成栅格图像的 TIF 文件,按照图层划分原则,在计算机内分层进行矢量化。线型、花纹、色标、符号等均按 《数字化地质图图层及属性文件格式》行业标准执行。
对于已建立的图层,按点、线、多边形分别编辑修改,结合地质图、地形图及相关地质报告,采集添加有关属性数据,用以表示各图层点、线、多边形的特征。拓扑处理前先将多边形的地质界线校正到标准图框内进行修改,去掉与当前图层区域边界无关的线或点。对于图幅边部不封闭的区域,采用图框线作为多边形的边界线,使图幅内的多边形均成为封闭的多边形。拓扑处理后进行图形数据与属性数据挂接。
在 MapGIS 实用服务子系统误差校正模块中,将数字化地图校正到统一的大地坐标系统中。图形数据库采用高斯-克吕格 (6 度带) 投影系统,椭球参数: 北京54/克拉索夫斯基。
MapGIS 数据文件交换功能使系统内部的矢量图层很容易实现 Shape 和 Coverage 等文件格式的转换。在图形处理模块将上述各图层转成 Shape 文件格式。
2.2.4 离散数据网格化
在收集的原始资料中,除 1∶50000 地形图和地质图之外,航空放射性伽玛能谱数据(包括原始的和去条带处理后的数据) 、航磁数据、山地重力测量数据都是离散的二维表格数据。用 GeoExpl 网格化。GeoExpl 数据处理与分析系统提供了多种网格化计算的数学方法,本次选用克立格插值方法,网格间距 15 m。重力和航磁数据网格化后,进行不同方向或不同深度的延拓处理。所有网格化数据均采用了与上述图形数据相同的地图投影和坐标系统。
2.2.5 网格化数据影像化
MapGIS 网格化文件格式为 grd,可直接被 Erdas Imagine 读取,GeoExpl 网格化文件包括重磁处理反演后的网格化文件可转换成 Surfer.grd 后,被 Erdas Imagine 读取。然后将上述网格化数据一一转成 img 影像数据格式。
2.2.6 DEM 生成
地形等高线 (L6XS03) 文件在 MapGIS 空间分析子系统 DEM 分析模块中,生成 DEM栅格化文件: L6XS03.grd,再转成 img 格式,文件名改为: XSDEM。
经过上述程序形成的各类矢量或栅格数据,在 ArcView 平台建立 “相山数据库”工程文件,将上述各 Shape 图形和 img 影像文件一一添加到该工程文件中。该工程文件即为相山地区矢量、栅格一体化地学空间数据库。该数据库,一可以对这类地学空间信息实现由 GIS 支持的图层管理,二可以视需要不断进行数字—图形—图像的转换,三可以将多源地学信息进行叠合和融合,以实现多源地学信息的深化应用和分析,为实现相山地区铀资源数字勘查奠定基础。
B. 为什么数据库系统采用三层模式两层映像能为系统提供高度的数据独立性
注意:如果被转换的镜像文件中包含有音、视频文件信息,那么系统会打开“高级转换”窗口,可根据需要选择所要转换的轨道,数据轨道将被转换为ISO文件,音乐
C. 什么是数据、数据库、数据库管理系统和数据库系统
数据:
科学实验、检验、统计等所获得的和用于科学研究、技术设计、查证、决策等的数值。
在计算机系统中,各种字母、数字符号的组合、语音、图形、图像等统称为数据,数据经过加工后就成为信息。
数据库:
数据库(DataBase,DB)是一个长期存储在计算机内的、有组织的、有共享的、统一管理的数据集合。她是一个按数据结构来存储和管理数据的计算机软件系统。数据库的概念实际包括两层意思: (1)数据库是一个实体,它是能够合理保管数据的“仓库”,用户在该“仓库”中存放要管理的事务数据,“数据”和“库”两个概念结合成为数据库。 (2)数据库是数据管理的新方法和技术,他能更合适的组织数据、更方便的维护数据、更严密的控制数据和更有效的利用数据。
数据库管理系统:
数据库管理系统(database management system)是一种操纵和管理数据库的大型软件,是用于建立、使用和维护数据库,简称dbms。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过dbms访问数据库中的数据,数据库管理员也通过dbms进行数据库的维护工作。它提供多种功能,可使多个应用程序和用户用不同的方法在同时或不同时刻去建立,修改和询问数据库。它使用户能方便地定义和操纵数据,维护数据的安全性和完整性,以及进行多用户下的并发控制和恢复数据库。
数据库系统:
数据库系统(database systems),是由数据库及其管理软件组成的系统。它是为适应数据处理的需要而发展起来的一种较为理想的数据处理的核心机构。它是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。
数据库系统(database systems),是由数据库及其管理软件组成的系统。它是为适应数据处理的需要而发展起来的一种较为理想的数据处理的核心机构。它是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。
数据库系统DBS(Data Base System,简称DBS)是一个实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质、处理对象和管理系统的集合体。它通常由软件、数据库和数据管理员组成。其软件主要包括操作系统、各种宿主语言、实用程序以及数据库管理系统。数据库由数据库管理系统统一管理,数据的插入、修改和检索均要通过数据库管理系统进行。数据管理员负责创建、监控和维护整个数据库,使数据能被任何有权使用的人有效使用。数据库管理员一般是由业务水平较高、资历较深的人员担任。
D. 中线万库是个啥东东
万库是线束工程师必备的一款数据库啊
E. 基于GIS数字地质图数据库的组成
1.数字地质图
传统的纸质模拟地图是根据地图模型(map model),按照一定的数学法则、符号、制图综合原理和比例,将地球空间实体和现象的形状、大小、相互位置、基本属性等表示在二维平面上。“数字地图”,简单地说,就是存储在计算机中数字化了的地图。一般来讲,数字地图是以地图数据库为基础,以数字形式存贮于计算机外存储器上,并能在电子屏幕上实时显示的可视地图,又称“屏幕地图”或“瞬时地图”。
(1)地质图
“地质图”乃是一切地质工作中的基本图件,用规定的符号、不同的颜色、描绘一地区的地质现象,反映沉积岩、岩浆岩、变质岩、各类矿产、各种型式的地质构造线等,反映它们形成的时代、分布和相互关系,以三维空间的立体形状表示在二维空间的平面上。金泽兰等在《地质图编汇法》中,提出地质图是一种将出露在地表的地质构造现象按比例投影到平面图(通常带有地形等高线,即地形图)上,并用规定的符号、色谱、花纹予以表示的图件。它是为特定目的服务的、有选择性地表示地质对象的时间和空间分布的符号化表现形式。在地质图上表示的地质对象即可以根据地质属性分类集合进行选择,也可以按照地理范围进行表示,一般情况下是两者结合进行的。总的来说,地质图是现实世界中地质客体在人脑中抽象的、具体的表达,是现实地质对象在图纸上的映射。如图7-11所示。
图7-15 以对象为中心的面向对象数据模型实现图形和属性统一存储
这种数据模型彻底解决了长期以来空间对象与其属性数据,在物理上分离带来的诸多难题,进而实现基于关系数据库的GIS空间数据一与其他非空间关系数据一体化管理,给GIS系统开发、应用带来了极大的便捷性。如利用空间引擎对空间与非空间数据进行操作,同时可以利用大型关系数据库海量数据管理、事务处理(transaction)、记录锁定、并发控制、数据仓库等功能。
4.GIS与数字地质图数据库的结合
GIS是分析和处理海量地理数据的通用技术,借助GIS,基于大量综合信息,可进行空间采样,对构造演化、火成活动、沉积相、矿产形成、模拟区域地质演化等复杂问题进行时空和多元统计分析,对成矿预测和矿产勘查提供有力分析工具。在数据量充裕前提下,GIS分析具有定量、定时、定位的特点,可给出动态(不同时间、不同位置)结果。借助深部与时间数据,GIS分析实际上可拓展到四维空间。
P.Gardenfors提出在客观世界和符号表达之间存在着概念层,他将知识表达分为三个层次,即:亚概念层、概念层、符号层,通过亚概念层感知客观世界,然后通过概念层将感知的内容抽象成为概念进行分类,将概念(分类)通过符号层表达出来。地理信息在概念层形成,在符号层表达,所以地理信息库的建立就是通过概念层对地理空间(客观世界)的抽象而形成地理信息概念空间,将该概念空间形式化后就成为本体化的地理信息空间,即可在计算环境下通过符号层(图形)表达出来。
地质信息系统研究的关键问题之一,就是构造图7-16中的地质模型,目的是通过有限的、不完全的并且含有各种噪声的观测数据来推断地下空间的物质、能量的分布和流动情况。
图7-16 地质认知过程的简化示意图
大部分矿产都不是暴露在表面,而是埋在地表深部。利用GIS的方法通过了解地表上层物质的空间分布,就可以判断矿藏存在的可能性。在一个找矿预测区域往往已知部分矿区和矿点,这些矿区和矿点具有很多的空间属性和地理属性,要想很直观的用以往普通的数据库管理系统去把它表达出来,可谓耗时费力。而GIS的出现为矿产资源评价和管理提供了前所未有的评价工具与手段。GIS是采集、管理、处理、分析、显示、输出多种来源的与地理空间位置相关信息的计算机系统。随着GIS与RS(遥感)、GPS(全球卫星定位系统)相结合的“3 S”集成以及计算机互联网的迅速发展,GIS在地质找矿中将发挥更加重要的作用。
目前,GIS与地质空间数据库的结合主要体现在以下几点:
(1)建立地质矿产资源数据库
描述矿产地属性的数据内容繁杂,类别众多,可分为属性数据和空间数据,矿产地各类属性信息认识、分析和评价该矿区也很重要。因此,地理空间信息在矿产资源管理中占有非常重要的地位。地质矿产数据库在GIS的支持下,结合矿产资源数据类型可建立多种地理空间数据库和属性数据库,利用GIS先进的数据库和图库管理对于各种地质图件和数据的长期保存及修改变得容易。
(2)图形显示的直观性和形象性
专题图不仅是一种重要的研究手段,同时也能有效而直观的反映研究成果。在地质数据库基础上,GIS可将各种数据或分析成果以专题图的形式直观而有效的显示,并可进行人机交互式地设计、编辑、修改。在成果输出方面,GIS能够提供高质量的预测成果图件,直观清晰,一目了然。GIS的这些功能,能将各种矿产资源的文字描述与空间地理位置有效的结合与表达,大大提高了矿产资源数据的直观性和形象性。
(3)空间分析功能
GIS的空间分析功能是GIS区别于其他计算机系统的主要标志。地质数据库系统涉及GIS多种空间分析功能,结合地质“专家知识”,为大范围大区域内实现快速、准确的成矿预测创造了有利条件。GIS吸取专家的经验及知识较容易,并且进行成矿预测具有空间直观性,避免了预测中的人为因素;能够弥补一些人工方法的缺陷(如对于断裂控矿影响宽度带的确定)。与传统的方法相比,GIS空间分析功能可以更加迅速地对大量数据进行对比和分析,大大节约了时间,缩短了研究周期,
(4)多源信息的集成
地质数据库的数据是多源数据。有不同精度、不同比例尺、不同数据源、不同格式的数据,借助GIS能将这些多源的数据有机地集成在一起,能提供集成管理多源地学数据(包括以文字、数字为主的属性信息和以图形图像为主的空间信息),具有方便建立模型及进行空间模拟分析的能力,使数据的分析更有效和定量化。进而,可以以多尺度、多方位反映某个地区的地质成矿信息。
由此可见,海量的地质数据与GIS强大的空间信息处理和分析功能的有机结合,是地质领域对多源地学信息综合分析进行成矿预测划时代的理想工具。
通过以上三个章节的分析论述,GIS在理论和技术上的日臻完善和强大,使得基于GIS地质图数据库的应用更加深入人心。在理论上,地理空间和地理信息空间的点本质认识以及地理信息元组概念的提出对地理信息应用特别是在地质领域的应用理论体系的建立提供了一条理论依据和入口;在技术上,以ArcGIS为代表的新一代地理信息系统的日益完善:在地理信息表达上,以本体为核心的地理信息表达方式为地质信息的表达及应用提供了强有力的工具,使得原有地理信息所不能完成的知识发现、复杂环境建模等复杂应用在新地理信息系统下成为现实;在地理信息分析技术上,ArcGIS从地理信息库(知识库)、基于知识库的智能可视化,以及地理信息处理三个角度为地理信息的各种应用提供了强有力的工具支持,特别是9.0版本开发以后,对探索式空间数据分析方法整合使从海量日益复杂的地理信息中进行数据挖掘和知识发现可以在空间、时间、属性一体化方式下进行。
F. 数据库系统由什么组成
数据库系统由哪几部分组成?数据库系统DBS(Data Base System,简称DBS)通常由软件、数据库和数据管理员组成。其软件主要包括操作系统、各种宿主语言、实用程序以及数据库管理系统。数据库由数据库管理系统统一管理,数据的插入、修改和检索均要通过数据库管理系统进行。数据管理员负责创建、监控和维护整个数据库,使数据能被任何有权使用的人有效使用。数据库管理员一般是由业务水平较高、资历较深的人员担任。
数据库系统一般由4个部分组成:
(1)数据库(database,DB)是指长期存储在计算机内的,有组织,可共享的数据的集合。数据库中的数据按一定的数学模型组织、描述和存储,具有较小的冗余,较高的数据独立性和易扩展性,并可为各种用户共享。
(2)硬件:构成计算机系统的各种物理设备,包括存储所需的外部设备。硬件的配置应满足整个数据库系统的需要。
(3)软件:包括操作系统、数据库管理系统及应用程序。数据库管理系统(database management system,DBMS)是数据库系统的核心软件,是在操作系统的支持下工作,解决如何科学地组织和存储数据,如何高效获取和维护数据的系统软件。其主要功能包括:数据定义功能、数据操纵功能、数据库的运行管理和数据库的建立与维护。
(4)人员:主要有4类。第一类为系统分析员和数据库设计人员:系统分析员负责应用系统的需求分析和规范说明,他们和用户及数据库管理员一起确定系统的硬件配置,并参与数据库系统的概要设计。数据库设计人员负责数据库中数据的确定、数据库各级模式的设计。第二类为应用程序员,负责编写使用数据库的应用程序。这些应用程序可对数据进行检索、建立、删除或修改。第三类为最终用户,他们利用系统的接口或查询语言访问数据库。第四类用户是数据库管理员(data base administrator,DBA),负责数据库的总体信息控制。DBA的具体职责包括:具体数据库中的信息内容和结构,决定数据库的存储结构和存取策略,定义数据库的安全性要求和完整性约束条件,监控数据库的使用和运行,负责数据库的性能改进、数据库的重组和重构,以提高系统的性能。
其中应用程序包含在软件范围内,是指数据库应用系统,比如开发工具、人才管理系统、信息管理系统等。
层次关系可参见如下图:
G. 什么是数据库
数据库就是储存数据的地方。在电脑中,在内存中,在硬盘中的东西都是存储在数据库中的数据。而这些数据所待的地方就叫做数据库。也可以称为电子化的“文件柜”。
在计算机科学与应用中的数据库意味着今后数据会越来越庞大,也意味着数据在以后的发展中在重多的科学还有应用中要运用到更多的数据。
(7)深图数据库扩展阅读:
数据库管理系统可以依据它所支持的数据库模型来作分类,例如关系式、XML;或依据所支持的计算机类型来作分类,例如服务器群集、或依据所用查询语言来作分类,例如SQL、XQuery;或依据性能冲量重点来作分类,例如最大规模、最高运行速度的分类方式。
不论使用哪种分类方式,一些DBMS能够跨类别,同时支持多种查询语言。早期比较流行的数据库模型有三种,而在当今的互联网中最常见的就是关系型数据库和非关系型数据库。
H. 地理数据库子系统
地理数据库子系统由地理信息管理系统与图层数据库及成果图数据库组成,图层数据库又可进一步细分为基础图层数据库和专业图层数据库。
地理信息管理系统使用Mapinfor商品软件,属于桌面型管理系统。系统主要使用Mapinfor软件自身的基础管理功能(未进行二次开发前就已有的功能),主要功能包括:图形编辑、图形输入、图形输出、图元查询与检索、投影变换、标注等。
图形编辑:利用十余种编辑工具,对图层可绘制点、线、域等图元,并可改变各种图元的样式与形状,改变图元的图层及删除等操作。编辑虽可用来输入图元,但效率低,主要用于对已输入图形进行精细加工,如整形等。
图形输入:用三种方法,即数字化仪法、屏幕数字化(结合栅格图像)及其它矢量图像的转换输入进行图形输入。在建立地理信息系统前,已有不少的专业图本身就是用某种矢量图形软件绘制的,如CAD格式图件,通过矢量图像的转换输入,不仅可保持原图的精度,又可极大地节约图形录入工作量。
图形输出:一幅成果图,需要在基础图层数据库和专业图层数据库中调出若干有关图层并选定绘制范围,再根据成果图的服务对象和作图目的,对图层进行适当的编辑(如改变标注位置,增加图件声明性文字等)后,便可完成。一般对编辑完成的成果图要存入成果图数据库中。图形输出功能,是将成果图数据库中的专业图,输出到绘图机。在输出操作过程中,可选择比例尺和重新定义绘图范围。
图元查询与选择:这是在编辑过程中频繁使用的操作,可分为点选择、范围选择、SQL选择。对选择出的图元对象,利用浏览表编辑功能或数据库编辑功能进行编辑,如删除图元,改变图元的某些属性以及将选择出的图元单经过适当编辑后,方可单独作为一新图层等。
投影变换:因塔里木盆地地域广阔,在前人绘制的各种基础与专业图件中,使用的投影与投影参数不尽相同,在利用其资料时,须转换为统一的投影系统(称本地投影)才能合成与叠加。MapInfor投影转换能力很强,在实际操作中,所出现的各种图件几乎都可找出对应的投影变换。
标注:尽管系统有自动标注功能,但在必要时,还需要对图件进行人工标注和增加图件文字性说明。由于使用的软件平台为汉字环境的Windows95,用其中的矢量汉字字体对图形进行中西文标注都很方便。
主要数据库文件类型:分为三类,即基础图层数据库、专业图层数据库、成果图数据库。
1.基础图层数据库
(1)行政界限(线图层)
(2)城市与村镇(点图层)
(3)地形(线图层)
(4)公路(线图层)
(5)铁路(线图层)
(6)河流(线图层)
(7)湖泊(域图层)
(8)植被带(域图层)
(9)地名(点图层)
(10)河流名
……
2.专业图层数据库
(1)地质与地层界限(域图层)
(2)断层(线图层)
(3)潜水富水性分区(域图层)
(4)承压水富水性分区(域图层)
(5)水源地分布(域图层)
(6)地下水的埋藏特点(域图层)
(7)地下水矿化度等值线(线图层)
(8)灌溉渠系(线图层)
(9)灌区(域图层)
(10)水库(域图层)
……
3.成果图数据库
(1)地下水分布图
(2)地下水等埋深图
(3)水资源开发利用规划
(4)地下水流场图
(5)地下水开采潜力图
(6)地下水开采强度图
……
I. 简述数据,数据库,数据库管理系统,数据库系统的概念。
数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的的原始素材。
数据库指的是以一定方式储存在一起、能为多个用户共享、具有尽可能小的冗余度的特点、是与应用程序彼此独立的数据集合。
数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库,简称DBMS。
数据库系统DBS(Data Base System,简称DBS)通常由软件、数据库和数据管理员组成。其软件主要包括操作系统、各种宿主语言、实用程序以及数据库管理系统。数据库由数据库管理系统统一管理,数据的插入、修改和检索均要通过数据库管理系统进行。数据管理员负责创建、监控和维护整个数据库,使数据能被任何有权使用的人有效使用。数据库管理员一般是由业务水平较高、资历较深的人员担任。
J. 简述数据库、数据库管理系统和数据库系统的概念
数据库、数据库管理系统和数据库系统的概念分别回答:
1、数据库:
数据库(Database)是按照数据结构来组织、存储和管理数据的仓库。
数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。
2、数据库管理系统:
数据库管理系统(Database Management System)是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库,简称DBMS。
数据库管理系统对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。
3、数据库系统:
数据库系统DBS(Data Base System,简称DBS)通常由软件、数据库和数据管理员组成。
数据库系统是为了适应数据处理的需要而发展起来的一种较为理想的数据处理系统,也是一个为了实际可运行的存储、维护和应用系统提供数据的软件系统,是存储介质 、处理对象和管理系统的集合体。