当前位置:首页 » 操作系统 » 增量挖掘算法

增量挖掘算法

发布时间: 2022-06-29 22:46:17

① 数据挖掘十大经典算法及各自优势

数据挖掘十大经典算法及各自优势

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。
1. C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;2) 在树构造过程中进行剪枝;3) 能够完成对连续属性的离散化处理;4) 能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2. The k-means algorithm 即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。
3. Support vector machines
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。
4. The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5. 最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6. PageRank
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7. AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8. kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9. Naive Bayes
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。10. CART: 分类与回归树
CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

以上是小编为大家分享的关于数据挖掘十大经典算法及各自优势的相关内容,更多信息可以关注环球青藤分享更多干货

② 常用的数据挖掘算法有哪几类

常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。

目前已经进入大数据的时代,所以数据挖掘和大数据分析的就业前景非常好,学好大数据分析和数据挖掘可以在各个领域中发挥自己的价值;同时,大数据分析并不是一蹴而就的事情,而是需要你日积月累的数据处理经验,不是会被轻易替代的。一家公司的各项工作,基本上都都用数据体现出来,一位高级的数据分析师职位通常是数据职能架构中领航者,拥有较高的分析和思辨能力,对于业务的理解到位,并且深度知晓公司的管理和商业行为,他可以负责一个子产品或模块级别的项目,带领团队来全面解决问题,把控手下数据分析师的工作质量。

想要了解更多有关数据挖掘算法的信息,可以了解一下CDA数据分析师的课程。课程教你学企业需要的敏捷算法建模能力,可以学到前沿且实用的技术,挖掘数据的魅力;教你用可落地、易操作的数据科学思维和技术模板构建出优秀模型,只教实用干货,以专精技术能力提升业务效果与效率。点击预约免费试听课。

③ 增量算法与分治算法各是什么含义

增量算法
增量算法是平面投影法中一种常用的点云剖分算法,该算法编程简单,占用内存少,计算速度较慢.针对
增量算法的特点,改进算法通过将不同位置的点剖分对应存储到不同的边链表和三角形链表中,降低了边和三角形的搜索时间,提高了三角化的速度

分治算法
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。
分治法解题的一般步骤:
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

④ 数据挖掘的经典算法

1. C4.5:是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
2. K-means算法:是一种聚类算法。
3.SVM:一种监督式学习的方法,广泛运用于统计分类以及回归分析中
4.Apriori :是一种最有影响的挖掘布尔关联规则频繁项集的算法。
5.EM:最大期望值法。
6.pagerank:是google算法的重要内容。
7. Adaboost:是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器然后把弱分类器集合起来,构成一个更强的最终分类器。
8.KNN:是一个理论上比较成熟的的方法,也是最简单的机器学习方法之一。
9.Naive Bayes:在众多分类方法中,应用最广泛的有决策树模型和朴素贝叶斯(Naive Bayes)
10.Cart:分类与回归树,在分类树下面有两个关键的思想,第一个是关于递归地划分自变量空间的想法,第二个是用验证数据进行减枝。
关联规则规则定义
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: 尿布与啤酒的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在尿布与啤酒背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。

⑤ 增量聚类算法包括哪些

bigshuai
增量聚类算法
目前有关增量聚类的研究主要是将增量数据看成是时间序列数据或按特定顺序的数据, 主要可以分成两类: 一类是每次将所有数据进行迭代,即从第一个数据到最后一个数据进行迭代运算, 其优点是精度高, 不足之处是不能利用前一次聚类的结果, 浪费资源; 另一类是利用上一次聚类的结果,每次将一个数据点划分到已有簇中, 即新增的数据点被划入中心离它最近的簇中并将中心移向新增的数据点, 也就是说新增的数据点不会影响原有划分, 其优点是不需要每次对所有数据进行重新聚类, 不足之处是泛化能力弱, 监测不出孤立点。因此, 如何设计增量聚类算法以提高聚类效率, 成为当前聚类分析的一个重要挑战。
目前存在各种各样的聚类方法[ 3] , 传统的聚类方法主要被划分成五类: 基于层次的、基于划分的、基于密度的、基于网格的和基于模型的聚类。基于层次的聚类和基于划分的聚类是实际生活中应用最为广泛的两类。前者可以进一步划分为自底向上和自顶向下两种[ 1] , 例如CLIQUE[ 3] 、ENCLUS 和MAFIA[ 4] 属于自底向上算法, PROCLUS[ 5] 和ORCLUS[ 6 ]属于自顶向下的算法。但是, 传统的层次聚类算法由于计算量过大不适用于大数据集, 例如BIRCH[ 2] 和CURE[ 7 ] 。传统的基于划分的算法包括k-means、k-modes等等, 其中k-means是现存聚类算法中最经典的聚类算法[ 8, 9] 。
增量聚类是维持或改变k 个簇的结构的问题。比如, 一个特定序列中的新的数据点可能被划分到已有k 个簇的一个簇中, 也可能被划分到新的簇中,此时会需要将另外两个簇变成一个[ 10 ] 。自从H art igan在文献[ 11]中提出的算法被实现[ 12] , 增量聚类就吸引了众人的关注。D. Fisher[ 13] 提出的COBWEB 算法是一种涉及到增量形式数据点的增量聚类算法。文献[ 14, 15]中给出了与数据库的动态方面相关的增量聚类的详细阐述, 文献[ 16􀀁 18]中列出了其广泛应用的领域。对增量聚类产生兴趣的动力是主存空间有限, 有些信息不需要存储起来,例如数据点之间的距离, 同时增量聚类算法可以根据数据点集的大小和属性数进行扩展[ 19] 。文献[ 10, 17]中也对于求解增量聚类问题的算法进行了研究。
现在很多聚类算法都是对单一数据类型的数据进行聚类, 但是现实数据中非常多的数据都是混合数据类型的数据, 既包含数值属性数据, 还是分类属性数据, 简单地丢弃其中一种数据类型, 或者将其中一种数据类型转换成另一种, 都会影响聚类的精度。因此, 混合属性数据增量聚类的研究具有非常重要的意义。
2 基于传统聚类方法及其变形的增量聚类算法
现在对于增量聚类方法的增量处理主要集中在三个方面, 一类是基于传统聚类方法及其各种变形的增量聚类算法, 一类是基于生物智能的增量聚类算法, 另一类是针对数据流的聚类算法。

⑥ 增量算法 在路径规划当中是什么意思

路径规划其实分为两种情况,一个是已知地图的,一个是未知地图的。
对于已知地图的,路径规划就变成了一个全局优化问题,用神经网络、遗传算法有一些。
对于未知地图的,主要就靠模糊逻辑或者可变势场法。
对于未知环境能自己构建地图的,也就是各种方法的结合了。

⑦ 算法设计中的增量算法(c#)

www.flinux.cn linux社区
去这里看看,应该有。

⑧ 数据挖掘算法有哪些

统计和可视化要想建立一个好的预言模型,你必须了解自己的数据。最基本的方法是计算各种统计变量(平均值、方差等)和察看数据的分布情况。你也可以用数据透视表察看多维数据。数据的种类可分为连续的,有一个用数字表示的值(比如销售量)或离散的,分成一个个的类别(如红、绿、蓝)。离散数据可以进一步分为可排序的,数据间可以比较大小(如,高、中、低)和标称的,不可排序(如邮政编码)。图形和可视化工具在数据准备阶段尤其重要,它能让你快速直观的分析数据,而不是给你枯燥乏味的文本和数字。它不仅让你看到整个森林,还允许你拉近每一棵树来察看细节。在图形模式下人们很容易找到数据中可能存在的模式、关系、异常等,直接看数字则很难。可视化工具的问题是模型可能有很多维或变量,但是我们只能在2维的屏幕或纸上展示它。比如,我们可能要看的是信用风险与年龄、性别、婚姻状况、参加工作时间的关系。因此,可视化工具必须用比较巧妙的方法在两维空间内展示n维空间的数据。虽然目前有了一些这样的工具,但它们都要用户“训练”过他们的眼睛后才能理解图中画的到底是什么东西。对于眼睛有色盲或空间感不强的人,在使用这些工具时可能会遇到困难。聚集(分群)聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显,而同一个群之间的数据尽量相似。与分类不同(见后面的预测型数据挖掘),在开始聚集之前你不知道要把数据分成几组,也不知道怎么分(依照哪几个变量)。因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好,这时你需要删除或增加变量以影响分群的方式,经过几次反复之后才能最终得到一个理想的结果。神经元网络和K-均值是比较常用的聚集算法。不要把聚集与分类混淆起来。在分类之前,你已经知道要把数据分成哪几类,每个类的性质是什么,聚集则恰恰相反。关联分析关联分析是寻找数据库中值的相关性。两种常用的技术是关联规则和序列模式。关联规则是寻找在同一个事件中出现的不同项的相关性,比如在一次购买活动中所买不同商品的相关性。序列模式与此类似,他寻找的是事件之间时间上的相关性,如对股票涨跌的分析。关联规则可记为A==>B,A称为前提和左部(LHS),B称为后续或右部(RHS)。如关联规则“买锤子的人也会买钉子”,左部是“买锤子”,右部是“买钉子”。要计算包含某个特定项或几个项的事务在数据库中出现的概率只要在数据库中直接统计即可。某一特定关联(“锤子和钉子”)在数据库中出现的频率称为支持度。比如在总共1000个事务中有15个事务同时包含了“锤子和钉子”,则此关联的支持度为1.5%。非常低的支持度(比如1百万个事务中只有一个)可能意味着此关联不是很重要,或出现了错误数据(如,“男性和怀孕”)。要找到有意义的规则,我们还要考察规则中项及其组合出现的相对频率。当已有A时,B发生的概率是多少?也即概率论中的条件概率。回到我们的例子,也就是问“当一个人已经买了锤子,那他有多大的可能也会买钉子?”这个条件概率在数据挖掘中也称为可信度,计算方法是求百分比:(A与B同时出现的频率)/(A出现的频率)。让我们用一个例子更详细的解释这些概念: 总交易笔数(事务数):1,000包含“锤子”:50包含“钉子”:80包含“钳子”:20包含“锤子”和“钉子”:15包含“钳子”和“钉子”:10包含“锤子”和“钳子”:10包含“锤子”、“钳子”和“钉子”:5 则可以计算出: “锤子和钉子”的支持度=1.5%(15/1,000)“锤子、钉子和钳子”的支持度=0.5%(5/1,000)“锤子==>钉子”的可信度=30%(15/50)“钉子==>锤子”的可信度=19%(15/80)“锤子和钉子==>钳子”的可信度=33%(5/15)“钳子==>锤子和钉子”的可信度=25%(5/20)

⑨ 求助数据挖掘算法CluStream算法的C\C++实现

分析了数据流的特点,针对数据流聚类算法CluStream对数据流中非球形聚类效果不好的情况,提出了基于数据流的不规则网格增量聚类算法IIGStream.IIGStream算法具备了传统网格聚类算法处理速度快的优点,同时能够动态增量地调整网格结构.对新到来的数据点,通过判断网格是否相连,保证了对于不同形状聚类的聚类效果.IIGStream在聚类时无需预先指定聚类数目,且对孤立点不敏感.在真实数据集与仿真数据集上的实验结果表明,IIGStream算法具有良好的适用性和有效性,在聚类精度以及速度上均优于CluStream算法

⑩ 什么叫增量数据挖掘

以前的时候,数据增加的速度比较慢,所以一次数据挖掘之后,其模式可以使用很长时间;而现在,数据的增长速度太快了,一次数据挖掘之后,其模式往往不能表示现有状态,所以提出通过增量方式,就是在原有模式上,结合新增数据进行再次挖掘,故名为增量数据挖掘。

热点内容
phpimplode 发布:2024-11-16 11:27:20 浏览:561
端游网易版我的世界决战斗罗服务器 发布:2024-11-16 11:14:37 浏览:20
byte类型c语言 发布:2024-11-16 11:07:28 浏览:577
androidview设置高度 发布:2024-11-16 10:52:26 浏览:488
cryptopythondes 发布:2024-11-16 10:52:15 浏览:877
多台电脑如何创建存储服务器 发布:2024-11-16 10:44:44 浏览:340
移动云服务器下载 发布:2024-11-16 10:37:23 浏览:857
融媒体中心建设专题片拍摄脚本 发布:2024-11-16 10:37:22 浏览:934
域控制服务器怎么管理vlan 发布:2024-11-16 10:06:49 浏览:28
jquery图片压缩上传 发布:2024-11-16 09:54:50 浏览:603