当前位置:首页 » 操作系统 » 大数据的算法研究

大数据的算法研究

发布时间: 2022-06-29 11:48:38

㈠ 大数据分析工具详尽介绍&数据分析算法

大数据分析工具详尽介绍&数据分析算法

1、 Hadoop

Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
⒊高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
2、 HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
该项目主要由五部分组成:
1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;
2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;
3、国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;
4、基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期 的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支 持这些调查和研究活动;
5、信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。
3、 Storm
Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、Admaster等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。Storm的处理速度惊人:经测 试,每个节点每秒钟可以处理100万个数据元组。Storm是可扩展、容错,很容易设置和操作。
4、 Apache Drill
为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。Apache Drill 实现了 Google’s Dremel.
据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。
该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
5、 RapidMiner
RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
功能和特点
免费提供数据挖掘技术和库
100%用Java代码(可运行在操作系统)
数据挖掘过程简单,强大和直观
内部XML保证了标准化的格式来表示交换数据挖掘过程
可以用简单脚本语言自动进行大规模进程
多层次的数据视图,确保有效和透明的数据
图形用户界面的互动原型
命令行(批处理模式)自动大规模应用
Java API(应用编程接口)
简单的插件和推广机制
强大的可视化引擎,许多尖端的高维数据的可视化建模
400多个数据挖掘运营商支持
耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。
6、 Pentaho BI
Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。流程可以很容易的被定制,也可以添加新的流程。BI 平台包含组件和报表,用以分析这些流程的性能。目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。 Pentaho的发行,主要以Pentaho SDK的形式进行。
Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;
Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。这些组件的大部分是基于标准的,可使用其他产品替换之。
7、 SAS Enterprise Miner
§ 支持整个数据挖掘过程的完备工具集
§ 易用的图形界面,适合不同类型的用户快速建模
§ 强大的模型管理和评估功能
§ 快速便捷的模型发布机制, 促进业务闭环形成
数据分析算法
大数据分析主要依靠机器学习和大规模计算。机器学习包括监督学习、非监督学习、强化学习等,而监督学习又包括分类学习、回归学习、排序学习、匹配学习等(见图1)。分类是最常见的机器学习应用问题,比如垃圾邮件过滤、人脸检测、用户画像、文本情感分析、网页归类等,本质上都是分类问题。分类学习也是机器学习领域,研究最彻底、使用最广泛的一个分支。
最近、Fernández-Delgado等人在JMLR(Journal of Machine Learning Research,机器学习顶级期刊)杂志发表了一篇有趣的论文。他们让179种不同的分类学习方法(分类学习算法)在UCI 121个数据集上进行了“大比武”(UCI是机器学习公用数据集,每个数据集的规模都不大)。结果发现Random Forest(随机森林)和SVM(支持向量机)名列第一、第二名,但两者差异不大。在84.3%的数据上、Random Forest压倒了其它90%的方法。也就是说,在大多数情况下,只用Random Forest 或 SVM事情就搞定了。
KNN
K最近邻算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。详细介绍链接
Naive Bayes
朴素贝叶斯算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。详细介绍链接
朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。
SVM
支持向量机算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。详细介绍链接
Apriori
Apriori算法是关联规则挖掘算法,通过连接和剪枝运算挖掘出频繁项集,然后根据频繁项集得到关联规则,关联规则的导出需要满足最小置信度的要求。详细介绍链接
PageRank
网页重要性/排名算法。PageRank算法最早产生于Google,核心思想是通过网页的入链数作为一个网页好快的判定标准,如果1个网页内部包含了多个指向外部的链接,则PR值将会被均分,PageRank算法也会遭到LinkSpan攻击。详细介绍链接
RandomForest
随机森林算法。算法思想是决策树+boosting.决策树采用的是CART分类回归数,通过组合各个决策树的弱分类器,构成一个最终的强分类器,在构造决策树的时候采取随机数量的样本数和随机的部分属性进行子决策树的构建,避免了过分拟合的现象发生。详细介绍链接
Artificial Neural Network
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。
人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境 (即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

㈡ 大数据挖掘常用的方法有哪些

1、分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。
它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
2、回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。
它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
3、聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。
它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。
4、关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。
在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
5、特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
6、变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。

㈢ 大数据时代 无处不在的算法应用

大数据时代 无处不在的算法应用
能不能讲讲算法在工作中的运用?你个人学习算法的过程是怎样的?我对算法还是有点怕。除此之外,你认为大学是应该多花时间学应用技术还是理论知识呢?
今天就来聊聊我自己学习算法的过程,以及算法在实际工作中的应用。
以前,我们认为大数据总是优于好算法。也就是说,只要数据量足够大,即使算法没有那么好,也会产生好的结果。
前一阵子“极客时间” App 发布了一条极客新闻:“算法比数据更重要,AlphaGo Zero 完胜旧版。”新闻的内容是谷歌人工智能团队 DeepMind 发布了新版的 AlphaGo 计算机程序,名为 AlphaGo Zero。这款软件能够从空白状态开始,不需要人类输入任何命令,便可以迅速自学围棋,并以 100 比 0 的战绩击败了上一代 AlphaGo。
AlphaGo Zero 最大的突破在于实现了“白板理论”。白板理论认为:婴儿是一块白板,可以通过后天学习和训练来提高智力。AI 的先驱图灵认为,只要能用机器制造一个类似于小孩的 AI,然后加以训练,就能得到一个近似成人智力,甚至超越人类智力的 AI。
自学成才的 AlphaGo Zero 正是实现了这一理论。AlphaGo 的首席研究员大卫·席尔瓦(David Silver)认为,从 AlphaGo Zero 中可以发现,算法比所谓的计算或数据量更为重要。事实上,AlphaGo Zero 使用的计算要比过去的版本少一个数量级,但是因为使用了更多原理和算法,它的性能反而更加强大。
由此可见,在大数据时代,算法的重要性日渐明晰。一个合格的程序员,必须掌握算法。
我不知道大家是怎样一步步开始精通算法和数据结构的。大二时,我第一次接触到了《数据结构》,因为从来没有过这方面的思维训练,当时的我学习这门课比较费力。那时候接触到的编程比较少,所以并没有很多实际经验让我欣赏和体味:一个好的数据结构和算法设计到底 “美” 在哪里。
开始学习的时候,我甚至有点死记硬背的感觉,我并不知道 “如果不这样设计”,实际上会出现哪些问题。各种时间和空间复杂度对我而言,也仅仅是一些不能融入到实际问题的数学游戏。至于“每种最坏情况、平均情况的时间空间复杂度与各种排序”,这些内容为什么那么重要,当时我想,可能因为考试会考吧。
没想到后来的时日,我又与算法重新结缘。可能是因为莱斯大学给的奖学金太高了,所以每个研究生需要无偿当五个学期的助教 。好巧不巧,我又被算法老师两次挑中当助教。所以,在命运强制下,一本《算法导论》就这样被我前前后后仔细学习了不下四遍。这样的结果是,我基本做过整本书的习题,有些还不止做了一遍。我学习算法的过程,就是反复阅读《算法导论》的过程。
那么,学习算法到底有什么用处呢?
首先,算法是面试的敲门砖国内的情况我不太清楚,但就硅谷的 IT 公司而言,不但电话面试偏算法,现场面试至少有两轮都是考算法和编程的。
大一些老一些的公司,像谷歌、Facebook、领英、Dropbox 等,都是直接在白板上写程序。小一些新一些的公司,如 Square、Airbnb 等,都是需要现场上机写出可运行的程序。Twitter、Uber 等公司则是白板上机兼备,视情况而定。
虽说还有其它考系统设计等部分,但如果算法没有打好基础,第一关就很难过,而且算法要熟悉到能够现场短时间内写出正解,所以很多人准备面试前都需要刷题。
有一次我当面试官,电话面试另外一个人,当时是用 Codepad 共享的方式,让对方写一个可运行的正则表达式解析器。45 分钟过去了,对方并没有写出来。我就例行公事地问:“你还有什么问题想问或者想了解么?” 对方估计因为写不出程序很有挫败感,就反问:“你们平时工作难道就是天天写正则表达式的解析器么?”
一瞬间,我竟无言以对。想了想,我回复说:“不用天天写。那我再给你 15 分钟,你证明给我看你还会什么,或者有什么理由让我给你进一步面试的机会?” 对方想了一会,默默挂掉了电话。
老实说,我对目前面试中偏重算法的程度是持保留意见的。算法题答得好,并不能说明你有多牛。牛人也有因为不愿刷题而马失前蹄的时候。但是除了算法测试,显然也没有更好的方法佐证候选人的实力;然而怎样才能最优化面试流程,这也是个讨论起来没完的话题,并且每次讨论必定无果而终。
其次,编程时用到的更多是算法思想,而不是写具体的算法说到实际工作中真正需要使用算法的机会,让我想一想 —— 这个范围应该在 10% 的附近游走。
有些朋友在工作中遇到算法场景多些,有的少些。更多的时候,是对业务逻辑的理解,对程序语言各种特性的熟练使用,对代码风格和模式的把握,各种同步异步的处理,包括代码测试、系统部署是否正规化等等。需要设计甚至实现一个算法的机会确实很少,即使用到,现学可能都来得及。
但是熟悉基本算法的好处在于:如果工作需要读的一段代码中包含一些基本算法思想,你会比不懂算法的人理解代码含义更快。读到一段烂代码,你知道为什么烂,烂在哪,怎么去优化。
当真的需要在程序中设计算法的时候,熟悉算法的你会给出一个更为完备的方案,对程序中出现的算法或比较复杂的时间复杂度问题你会更有敏感性。熟悉算法你还可以成为一个更优秀的面试官,可以和别的工程师聊天时候不被鄙视。
最后,不精通算法的工程师永远不是好工程师当然,除了算法导论中那些已成为经典的基本算法以及算法思想(Divide-and-conquer,Dynamic programming)等,其实我们每天接触到的各种技术中,算法无处不在。
就拿人人都会接触的存储为例吧,各种不同的数据库或者键值存储的实现,就会涉及各种分片(Sharding)算法、缓存失败(Cache Invalidation)算法、 锁定(Locking)算法,包括各种容错算法(多复制的同步算法)。 虽然说平时不太会去写这些算法 —— 除非你恰恰是做数据库实现的 —— 但是真正做到了解这项技术的算法细节和实现细节,无论对于技术选型还是对自己程序的整体性能评估都是至关重要的。
举个例子,当你在系统里需要一个键值存储方案的时候,面对可供选择的各种备选方案,到底应该选择哪一种呢?
永远没有一种方案在所有方面都是最佳的。就拿 Facebook 开源的 RocksDB 来说吧。了解它历史的人都知道,RocksDB 是构建在 LevelDB 之上的,可以在多 CPU 服务器上高效运行的一种键值存储。而 LevelDB 又是基于谷歌的 BigTable 数据库系统概念设计的。
早在 2004 年,谷歌开始开发 BigTable,其代码大量的依赖谷歌内部的代码库,虽然 BigTable 很牛,却因此无法开源。2011 年,谷歌的杰夫·迪恩和桑杰·格玛沃尔特开始基于 BigTable 的思想,重新开发一个开源的类似系统,并保证做到不用任何谷歌的代码库,于是就有了 LevelDB。这样一个键值存储的实现也用在了谷歌浏览器的 IndexedDB 中,对于谷歌浏览器的开源也提供了一定的支持。
我曾经在文章中提到过 CockroachDB,其实又可以看作是基于 RocksDB 之上的一个分布式实现。从另一个层面上讲,CockroachDB 又可以说是 Spanner 的一个开源实现。知道这些,就知道这些数据库或键值存储其实都同出一系。再来看看 LevelDB 底层的 SSTable 算法,就知道他们都是针对高吞吐量(high throughput),顺序读 / 写工作负载(sequential read/write workloads)有效的存储系统。
当然,一个系统里除了最基本的算法,很多的实现细节和系统架构都会对性能及应用有很大的影响。然而,对算法本身的理解和把握,永远是深入了解系统不可或缺的一环。
类似的例子还有很多,比如日志分析、打车软件的调度算法。
拿我比较熟悉的支付领域来说吧,比如信用卡 BIN 参数的压缩,从服务端到移动 App 的数据传输,为了让传输数据足够小,需要对数据进行压缩编码。
每个国家,比如中国、韩国、墨西哥信用卡前缀格式都不一样,如何尽量压缩同时又不会太复杂,以至于影响移动 App 端的代码复杂度,甚至形成 Bug 等,也需要对各种相关算法有详尽地了解,才有可能做出最优的方案。
关于算法我们来总结一下:
在大数据时代,数据和算法都同等重要,甚至算法比计算能力或数据量更为重要。
如何学习算法呢?读经典着作、做题,然后在实践中阅读和使用算法。
算法是面试的敲门砖,可以帮助你得到一份自己喜欢的工作。
写程序中用到的更多是算法思想,不是写具体的算法。
不精通算法的工程师永远不会是一个优秀的工程师,只有对各种相关算法有详尽理解,才有可能做出最优的方案。

㈣ 大数据的新算法:简化数据分类

大数据的新算法:简化数据分类

如今,大数据时代悄然来临。专家用“大数据”的表达描述大量信息,比如数十亿人在计算机、智能手机以及其他电子设备上分享的照片、音频、文本等数据。当前这种模式为我们的未来展现了前所未有的愿景:比如追踪流感疫情蔓延,实时监控道路交通,处理紧急自然灾害等。对人们而言,想要利用这些庞大的数据,首先必须要了解它们,而在此之前我们需要一种快捷有效自动的方式对数据进行分类。

其中一种最为常用的系统,是一系列称之为簇分析的统计技术,这种技术能依据数据的“相似性”进行数据分组。来自意大利国际高等研究院(SISSA)的两位研究者基于简单且强大的原理设计了一种簇分析方法,被证明可以非常有效地解决一些大数据分析中遇到的主要典型问题。

数据集合可以视为多维空间的云数据点。这些点呈现不同分配方式:或稀疏地分布在一个区域,或密集地分布在另外一个区域。簇分析就是用来有效地鉴别密集型区域,基于基本的准则将数据分为一定数量的重要子集合,每个子集合对应一种分类。

“以一个面部图像数据库为例,”SISSA统计与生物物理系教授Alessandro Laio说,“数据库可能包含同一个人的多张照片,簇分析可以用来归类同一人的所有照片。这种类型的分析可用自动脸部识别系统来完成。”

“我们试着设计一种较现有方法更为有效的算法,来解决簇分析中典型的问题。”Laio继续补充说。

“我们的方法基于一种新的鉴定簇中心,比如子集合,”另一位研究者Alex Rodriguez解释道,“试想这样的情形,在无法访问地图中,却不得不鉴定全球所有的城市时,这无疑是一个艰巨的任务。”Rodriguez进一步解释道,“因此我们在做一种探索式的识别,尝试寻找一条简单的规则或是一种捷径来达成目标。”

“为了确定一个地方是否达到城市级别规模,我们可以让当地居民计数自己的‘邻居’,换句话说,他房子的100米内住了多少人。一旦得到这个数字,我们继续去确认每一个居民,他们身边最近的拥有最多邻居数的居民。借助这两组数据结果交叉的部分,就可以推断每个人所在居住区域人口的稠密程度,以及拥有邻居数最多的两家间距。就全球人口而言,通过自动交叉检测这些数据,我们能识别代表簇状中心的个体,这些个体就是不同的城市。” Laio解释道。

“我们的算法能够精确地完成此类计算,也适用于其他场景,”Rodriguez进一步补充说,此算法表现相当优异。Rodriguez对此有着深刻理解:“借用面部数据档案Olivetti Face数据库,我们测试了自己的数学模型,并获得了满意的结果。此系统能够正确地识别大部分个体,从不产生假阳性结果,这意味着在某些情况下,它可能无法识别事物,但绝不会混淆一个个体与另一个个体。与类似的方法相比,我们的算法能够有效地剔除异类,要知道这些异类的数据点与其他数据存在较大差异是会损毁分析结果的。”

以上是小编为大家分享的关于大数据的新算法:简化数据分类的相关内容,更多信息可以关注环球青藤分享更多干货

㈤ 大数据挖掘方法有哪些

数据挖掘是指人们从事先不知道的大量不完整、杂乱、模糊和随机数据中提取潜在隐藏的有用信息和知识的过程。下面说下我们在挖掘大数据的时候,都会用到的几种方法:
方法1.(可视化分析)无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。
方法2.(数据挖掘算法)如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。
方法3.(预测分析能力)数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。
方法4.(语义引擎)由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。
方法5.(数据质量和主数据管理)数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。

想要了解更多有关大数据挖掘的信息,可以了解一下CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。真正给企业提出可行性的价值方案和价值业务结果。点击预约免费试听课。

㈥ 大数据分析的高级分析算法

众所周知,大数据分析的高级分析算法过程为下游流程提供了更精确,价值更高的数据,这对于公司真正利用其数据的价值并实现其所需的结果至关重要。下面是小编整理的一些高级分析计划中使用的一些最受欢迎的算法。每种方法都有优缺点,可以有效地利用它来产生业务价值的方式也不同。实施这些算法的最终目标是进一步优化数据,使结果信息可以应用于业务决策。

㈦ 大数据分析的概念和方法

一、大数据分析的五个基本方面

1,可视化分析

大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

2,数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

3,预测性分析能力

大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

4,语义引擎

大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。

5,数据质量和数据管理

大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

二、如何选择适合的数据分析工具

要明白分析什么数据,大数据要分析的数据类型主要有四大类:

1.交易数据(TRANSACTION DATA)

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。

2.人为数据(HUMAN-GENERATED DATA)

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。

3.移动数据(MOBILE DATA)

能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。

4.机器和传感器数据(MACHINE AND SENSOR DATA)

这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)

热点内容
怎么看笔记本配置好坏怎么对比 发布:2025-01-23 08:50:00 浏览:514
安卓q用起来怎么样 发布:2025-01-23 08:49:14 浏览:294
foreach数据库 发布:2025-01-23 08:49:05 浏览:741
什么是车棚配置 发布:2025-01-23 08:42:58 浏览:312
智能电视盒子无线网密码在哪里 发布:2025-01-23 08:42:14 浏览:277
代理提取源码 发布:2025-01-23 08:41:35 浏览:62
nas网络服务器为什么贵 发布:2025-01-23 08:00:00 浏览:941
语音服务器未连接如何连接视频 发布:2025-01-23 07:59:11 浏览:883
日流量10万需要什么类型服务器 发布:2025-01-23 07:58:27 浏览:501
服务器获取地址失败 发布:2025-01-23 07:55:18 浏览:850