双线性插值插值算法
1. 双线性插值法 四个点怎么确定
双线性插值是二维的插值,先把一维的弄懂了会比较好理解二维的;
首先是插值,因为要存储所有的点和点上的值所占的空间比较大,所以就先存一部分点,想用的时候就用这部分点插值得到其他所有的点。
那要存储的这些点是怎么得来的呢,就好比你说的四个点,就是我们要存的网格点(一般通过对已知的坐标区域画网格的方法得到,落在网格四个角上的点就是我们要存的点,其他的点就不存了 以后通过公式插出来,网格的大小自己顶,比如说原来的坐标点是12*12的矩阵,将这个矩阵均匀的画成4行4列,就行了了3*3的16个小网格),P点就是要在这四个点组成的长方形内,或者边上的点,
2. 线性插值法计算公式是什么
举个例子,已知x=1时y=3,x=3时y=9,那么x=2时用线性插值得到y就是3和9的算术平均数6。写成公式就是:Y=Y1+(Y2-Y1)×(X-X1)/(X2-X1)。
线性插值法:
线性插值是数学、计算机图形学等领域广泛使用的一种简单插值方法。
内插法又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。
线性插值法的应用:
线性插值经常用于补充表格中的间隔部分。假设一个表格列出了一个国家 1970年、1980年、1990年以及 2000年的人口,那么如果需要估计 1994年的人口的话,线性插值就是一种简便的方法。
两值之间的线性插值基本运算在计算机图形学中的应用非常普遍,以至于在计算机图形学领域的行话中人们将它称为lerp。所有当今计算机图形处理器的硬件中都集成了线性插值运算,并且经常用来组成更为复杂的运算:例如,可以通过三步线性插值完成一次双线性插值运算。由于这种运算成本较低,所以对于没有足够数量条目的光滑函数来说,它是实现精确快速查找表的一种非常好的方法。
3. 对图像进行双线性插值算法后,图像出现块效应怎么解决
interpolation 插值方法,类似于 CV_INTER_NN 方法。当图像放大时,dst 输出图像,该方法可以避免波纹出现。当图像缩小时候;
src 输入图像,
CV_INTER_LINEAR - 双线性插值 (缺省使用)
CV_INTER_AREA - 使用象素关系重采样.
该方法就是用于将图像改变为dst定义的大小..
CV_INTER_CUBIC - 立方插值, CvArr* dstvoid cvResize( const CvArr* src,然后根据你选择的插值方法进行插值, int interpolation=CV_INTER_LINEAR ):
CV_INTER_NN - 最近邻插值.
4. 如何用MATLAB编写一个双线性插值的算法,用来放大缩小图象
%% 4.图像的缩放
% 思路:双线性插值
kV = 0.5; % 垂直缩放系数
kH = 0.5; % 水平缩放系数
% 读入图像
I = imread('D:\lena.bmp'); % 注意修改文件路径
II = double(I);
[m, n, r]=size(II);
OI=zeros(m*kV,n*kH, r);
rot=[kV 0 0;0 kH 0;0 0 1]; % 变换矩阵
for k=1:r
for i=1:m*kV
for j=1:n*kH
pix=[i j 1]/rot;
Y =pix(1)-floor(pix(1));
X =pix(2)-floor(pix(2));
% 边界处理
if pix(1) < 1
pix(1) = 1;
end
if pix(1) > m
pix(1) = m;
end
if pix(2) < 1
pix(2) = 1;
end
if pix(2) > n
pix(2) =n;
end
% 四个邻点
pix1 = [floor(pix(1))floor(pix(2))];
pix2 = [floor(pix(1))ceil(pix(2))];
pix3 = [ceil(pix(1))floor(pix(2))];
pix4 = [ceil(pix(1))ceil(pix(2))];
% 计算临近四个点的权重
w1 = (1-X)*(1-Y);
w2 = X*(1-Y);
w3 = (1-X)*Y;
w4 = X*Y;
% 按权重进行双线性插值
OI(i,j,k)=...
w1*II(pix1(1),pix1(2),k)+ ...
w2*II(pix2(1),pix2(2),k)+ ...
w3*II(pix3(1),pix3(2),k)+ ...
w4*II(pix4(1),pix4(2),k);
end
end
end
figure, imshow(uint8(II)), title('原图')
figure, imshow(uint8(OI)), title('缩放后')
5. 如何使用Matlab实现双线性插值算法
提问前建议先自行网络
关键词
“matlab”+
“双线性插值”
首先需要了解什么是双线性插值:
如果选择一个坐标系统使得
的四个已知点坐标分别为
(0,
0)、(0,
1)、(1,
0)
和
(1,
1),那么插值公式就可以化简为
f(x,y)=f(0,0)(1-x)(1-y)+f(0,1)(1-x)y+f(1,1)xy+f(1,0)x(1-y)
相应进行matlab程序编写即可
6. 什么是双线性插值算法
双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。首先在 x 方向进行线性插值,然后在 y 方向进行线性插值。
与这种插值方法名称不同的是,这种插值方法并不是线性的,而是是两个线性函数的乘积。
线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。
7. 什么是线性插值原理 什么是双线性插值
线性插值一次为:0,5,10,15,20,25,30,35,40 即认为其变化(增减)是线形的,可以在坐标图上画出一条直线 在数码相机技术中,这些数值可以代表组成一张照片的不同像素点的色彩、色度等指标。 为了方便理解,先考虑一维情况下的线性插值 对于一个数列c,我们假设c[a]到c[a+1]之间是线性变化的 那么对于浮点数x(a<=x<a+1),c(x)=c[a+1]*(x-a)+c[a]*(1+a-x); 把这种插值方式扩展到二维情况 对于一个二维数组c,我们假设对于任意一个浮点数i,c(a,i)到c(a+1,i)之间是线性变化的,c(i,b)到c(i,b+1)之间也是线性变化的(a,b都是整数) 那么对于浮点数的坐标(x,y)满足(a<=x<a+1,b<=y<b+1),我们可以先分别求出c(x,b)和c(x,b+1): c(x,b) = c[a+1]*(x-a)+c[a]*(1+a-x); c(x,b+1) = c[a+1][b+1]*(x-a)+c[a][b+1]*(1+a-x); 好,现在已经知道c(x,b)和c(x,b+1)了,而根据假设c(x,b)到c(x,b+1)也是线性变化的,所以: c(x,y) = c(x,b+1)*(y-b)+c(x,b)*(1+b-y) 这就是双线性插值,
8. 图像处理中的双线性插值算法的原理
何东健的《数字图像处理》光盘第六章有前两种的程序
完整程序已发你邮箱
核心代码如下:
for(y = 0; y < nNewHeight; y++)
{
//指向新图像第y行
//注意此处宽度和高度是新图像的宽度和高度
pNewTemp = pNewBits;
pNewTemp += (nNewHeight - 1 - y) * nNewWidthBytes;
//针对图像每列进行操作
for(x = 0; x < nNewWidth; x++)
{
//计算该像素在源图像中的坐标
int y0 = (long) (y / fYZoomRatio + 0.5);
int x0 = (long) (x / fXZoomRatio + 0.5);
//判断是否在源图范围内
if( (x0 >= 0) && (x0 < nOldWidth) &&
(y0 >= 0) && (y0 < nOldHeight))
{
//用双线性插值
if(bBilinear)
{
unsigned char *pTemp = Interpolation (nOldWidth, nOldHeight,
(float)x0, (float)y0,
nOldWidthBytes, nMovedBits, pOldBits);
//复制像素
memcpy(pNewTemp, pTemp, nMovedBits);
delete [] pTemp ;
}
else
//最近邻插值
{
//指向源图像第y0行,第x0个像素
//注意此处宽度和高度应该互换
pOldTemp = pOldBits;
pOldTemp += (nOldHeight - 1 - y0) * nOldWidthBytes;
pOldTemp += x0 * nMovedBits;
//复制像素
memcpy(pNewTemp, pOldTemp, nMovedBits);
}
}
pNewTemp += nMovedBits;
}
}
9. 双线性插值原理的双线性插值
把这种插值方式扩展到二维情况
对于一个二维数组c,我们假设对于任意一个浮点数i,c(a,i)到c(a+1,i)之间是线性变化的,c(i,b)到c(i,b+1)之间也是线性变化的(a,b都是整数)
那么对于浮点数的坐标(x,y)满足(a<=x<a+1,b<=y<b+1),我们可以先分别求出c(x,b)和c(x,b+1):
c(x,b) = c[a+1][b]*(x-a)+c[a][b]*(1+a-x);
c(x,b+1) = c[a+1][b+1]*(x-a)+c[a][b+1]*(1+a-x);
好,现在已经知道c(x,b)和c(x,b+1)了,而根据假设c(x,b)到c(x,b+1)也是线性变化的,所以:
c(x,y) = c(x,b+1)*(y-b)+c(x,b)*(1+b-y)
这就是双线性插值,
10. 双线性插值的示例
已知的红色数据点与待插值得到的绿色点
假如我们想得到未知函数f在点P= (x,y) 的值,假设我们已知函数f在Q11 = (x1,y1)、Q12 = (x1,y2),Q21 = (x2,y1) 以及Q22 = (x2,y2) 四个点的值。
首先在x方向进行线性插值,得到R1和R2,然后在y方向进行线性插值,得到P.
这样就得到所要的结果f(x,y).
其中红色点Q11,Q12,Q21,Q22为已知的4个像素点.
第一步:X方向的线性插值,插入蓝色 第二步 :做完X方向的插值后再做Y方向的
点R1和R2插值 ,由R1与R2计算P点.
Y方向上插入绿色点P.
线性插值的结果与插值的顺序无关。首先进行y方向的插值,然后进行x方向的插值,所得到的结果是一样的。但双线性插值插值方法这种方法并不是线性的,首先进行y方向的插值,然后进行x方向的插值,与首先进行 x方向的插值,然后进行 y方向的插值,所得到的R1与R2是不一样的。
如果选择一个坐标系统使得 的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为
f(x,y)=f(0,0)(1-x)(1-y)+f(0,1)(1-x)y+f(1,1)xy+f(1,0)x(1-y) 在x与y方向上,z值成单调性特性的应用中,此种方法可以做外插运算,即可以求解Q1~Q4所构成的正方形以外的点的值。 双线性插值的一个显然的三维空间延伸是三线性插值。 三线性插值的方法可参看matlab中的interp3