GCG数据库
Ⅰ 全基因合成钱对目的基因序列进行GC含量和重复序列分析的软件是什么
1.可以使用在线分析工具RepeatMasker: http://www.repeatmasker.org/,重复序列和CG含量都可以同时分析出来。
2.另外也可以使用DNAstar。下载安装DNAStar软件包;打开NAStar软件包里的EditSeq软件;在打开的界面里依次点击File、Open,打开所要分析的序列;用鼠标选定打开的序列后,依次点击Goodies、DNAStatistics;此时弹出一个文本框,显示GC含量等信息。
Ⅱ 急求:基因预测的方法和步骤
方法1:最长ORF法
将每条链按6个读码框全部翻译出来,然后找出所有可能的不间断开放阅读框(ORF),只要找出序列中最长的ORF,就能相当准确地预测出基因。最长ORF法发现基因的一般过程(包括基因区域预测和基因功能预测2个层次):
步骤1:获取DNA目标序列
① 如果已有目标序列,可直接进入步骤2;
② 可以通过PubMed查找感兴趣的资料,通过GenBank或EMBL等数据库查找目标序列。
步骤2:查找ORF并将目标序列翻译成蛋白质序列
利用相应工具,如ORF Finder、Gene feature (Baylor College of Medicine)、GenLang (University of Pennsylvania)等查找ORF并将DNA序列翻译成蛋白质序列。
步骤3:在数据库中进行序列搜索
利用BLAST进行ORF核苷酸序列和ORF翻译的蛋白质序列搜索。
步骤4:进行目标序列与搜索得到的相似序列的全局比对(global alignment)
虽然步骤3已进行局部比对(local alignment)分析,但全局比对有助于进一步加深对目标序列的认识。
步骤5:查找基因家族
进行多序列比对(multiple sequence alignment),获得比对区段的基因家族信息。
步骤6:查找目标序列中的特定模序
分别在Prosite、BLOCK、Motif数据库中进行profile、模块(block)、模序(motif)检索。
步骤7:预测目标序列蛋白质结构
利用PredictProtein(EMBL)、NNPREDICT(University of California)等预测目标序列的蛋白质二级结构。
步骤8:获取相关蛋白质的功能信息
为了了解目标序列的功能,收集与目标序列和结构相似蛋白质的功能信息非常必要。可利用PubMed进行搜索。
方法2:利用编码区与非编码区密码子选用频率的差异进行基因预测
编码区的碱基组成不同于非编码区,这是由于蛋白质中20种氨基酸出现的概率、每种氨基酸的密码子兼并度和同一种氨基酸的兼并密码子使用频率不同(即密码子偏好)等原因造成的。该方法是目前各种预测程序中广泛应用的一种方法,如GCG(Genetic Computer Group研制的核酸、蛋白质分析软件包)的TestCode和Baylor Medcine College的BCM Gene Finder等程序均利用了这一方法。
方法3:利用ESTs预测基因
Expressed Sequence Tags (ESTs) 代表基因序列,若DNA序列和 EST严格匹配,这段DNA序列属于基因或假基因。此法对ESTs进行聚类和拼接,聚类和拼接的目的就是将来自同一个基因或同一个转录本的具有重叠部分(over-lapping)的ESTs整合到单一的簇(cluster)中。通过聚类可产生较长的一致性序列(consensus sequence),降低数据的冗余,纠正错误数据,并最终得到基因的全长序列。
随着信息学方法在基因预测中的进一步充分应用,一批新的基因预测方法被相继提出,如人工神经网络、隐马尔可夫模型(Hidden Markov Model, HMM)、动态规划法(dynamic programming)、法则系统(ruled-based system)、线性判别分析(Linear Discriminant Analysis, LDA)、决策树(decision tree)、傅立叶分析(Fourier analysis)等。这些方法是基于编码区所具有的独特信号,如剪接的供体和受体位点、起始和终止密码子、启动子特征、转录因子结合位点等进行预测。相关的基因预测软件包括:Procrustes、GeneID、GenScan、GRAIL等。
Ⅲ 核酸序列对应 蛋白质
你是用Nucleotide数据库搜索的吧,你进入某个基因的详细页面,在页面的右下方,有个“Alllinksfromthisrecord”,有一系列的链接,其中一个事Protein,你点击进入即可
Ⅳ 求高人指教,关于生物信息学中NCBI数据库的blastn的用法.
你进了NCBI的blast页面之后,粘贴进去序列,下面的program selection 选择第三个。结果中有一个“Gallus gallus”,即是家鸡了(应该是从上面数第二个结果)。
Ⅳ 什么是gcg
GCG软件是一套蛋白质、核酸序列分析软件。它提供了约130个程序。范围涉及:序列motif、关键词、同源性数据库搜索,序列比较,进化分析,序列两级结构分析,限制性酶切图谱,引物设计,序列模式识别,翻译,片段拼接等。现在我们生命院开放使用的是GCG的WWW版本SEQWEB。SEQWEB提供的数据库每二个月更新一次。 希望能帮到您
Ⅵ 已知蛋白名字 怎么找到其核酸序列
已知蛋白质
可应用X射线晶体衍射法测定其三维空间结构
利用核磁共振法了解其构象
DNA和蛋白质测序技术
可测定其一级结构、也就是你所说的核酸序列
至于 知道蛋白质名字 找到核算序列
只能是别人 测过的
用Nucleotide数据库搜索
或者是 你知道了氨基酸序列
可通过密码子对应表知道核酸序列
起始密码子:甲硫氨酸AUG 缬氨酸GUG
终止密码子:UAA UGA UAG
奔丙氨酸UUU UUC 亮氨酸UUA UUG CUU CUC CUA CUG 异亮氨酸AUU AUC AUA 缬氨酸GUU GUC GUA 丝氨酸UCU UCC UCA UCG
苏氨酸ACU ACC ACA ACG 丙氨酸GCU GCC GCA GCG 酪氨酸UAU UAC 组氨酸CAU CAC 谷氨酰胺CAA CAG 天冬酰胺AAU AAC
赖氨酸AAA AAG 天冬氨酸GAU GAC 谷氨酸GAA GAG 半胱氨酸UGU UGC 精氨酸CGC CGC CGA CGG AGA AGG 甘氨酸GGU GGC GGA GGG
色氨酸UGG 脯氨酸CCU CCC CCA CCG
你可以根据不同氨基酸的组合来确定蛋白质的序列
注:1.起始密码是翻译第一个氨基酸的密码,它们在细菌中都代表甲酰甲硫氨酸
2.终止密码不编码氨基酸,是翻译终止的信号
不知道有没有氨基酸翻译成蛋白质的表格
那个比较麻烦、因为蛋白质太多太多
还有什么疑问、请 追问。
Ⅶ 请问这篇论文里的DNA序列式怎么出来的
这序列是blast出来的,你可以在NCBI上搜索的http://blast.ncbi.nlm.nih.gov/Blast.cgi
Ⅷ NCBI数据库中为什么搜不到proglucagon(胰高血糖素原)的mRNA序列呢
我查询了NCBI数据库,在核酸数据库(Genbank)中确实没有查询结果,但是其他数据库是有结果的,例如蛋白质数据库中。
我想你是知道的,胰高血糖素是胰高血糖素经过酶切的产物,也就是说都是“翻译后”的发生的事情。
回过头了,我们来说NCBI。NCBI的核酸序列都是生物学家通过测序获得的,要么是基因组序列,要么是转录组序列。所有序列都是以基因名为主要检索词
因此,如果你用基因名称GCG或glucogen检索就可以检索到你想要的结果。参考资料中是gene database的链接。
看一下这个链接
http://www.ncbi.nlm.nih.gov/gene/2641#reference-sequences
Ⅸ 如何用blast 发现新基因
BLAST对一条或多条序列(可以是任何形式的序列)在一个或多个核酸或蛋白序列库中进行比对。BLAST还能发现具有缺口的能比对上的序列。
BLAST是基于Altschul等人在J.Mol.Biol上发表的方法(J.Mol.Biol.215:403-410(1990)),在序列数据库中对查询序列进行同源性比对工作。从最初的BLAST发展到现在NCBI提供的BLAST2.0,已将有缺口的比对 序列也考虑在内了。BLAST可处理任何数量的序列,包括蛋白序列和核算序列;也可选择多个数据库但数据库必须是同一类型的,即要么都是蛋白数据库要么都是核酸数据库。所查询的序列和调用的数据库则可 以是任何形式的组合,既可以是核酸序列到蛋白库中作查询,也可以是蛋白序列到蛋白库中作查询,反之亦然。
GCG及EMBOSS等软件包中包含有五种BLAST:
1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。
2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。
3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。
4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。
5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。由于这种比对? 母丛有裕�虼薚BLASTX在比对中对缺口不予以考虑。
所以总的来说,BLAST是用来比对的,如果与文库中的基因都不同,可能是新的基因,然后还要做其他方面的研究。
Ⅹ 用 生物信息学软件 解决 一个生物学问题
GeneGazer是一个,不过上网看了以后觉得貌似据说比较戳。。。
下面是一篇文章,MAYBE对你有用,我虽然也学生物滴,不过跟生物信息学没什么交集哈。。。
Wisconsin 软件包( GCG )
Genetics Computer Group 公司开发的 Wisconsin 软件包,是一组综合性的序列分析程序,使用公用的核酸和蛋白质数据库。 SeqLab 是其图形用户界面( GUI ),通过它可以使用所有 Wisconsin 软件包中的程序及其支持的数据库。此外,它还提供了一个环境用于创建、显示、编辑和注释序列。 SeqLab 也可以被扩展使其可以包括其它公用或非公用的程序和数据库。
Wisconsin软件包由120多个独立的程序组成,每个程序进行一项单一的分析任务。包括所有程序的完整目录以及详细的描述可以在Wisconsin软件包的程序使用文档中找到。GCG支持两种核酸数据库(GenBank数据库, 简化版的EMBL核酸序列数据库)和三种蛋白质数据库(PIR,SWISS-PROT, SP-TrEMBL)。这些数据库既有GCG格式的(供大多数Wisconsin软件包程序使用),也有BLAST格式的(供BLAST数据库搜索程序使用)。同时还提供了用于LookUp程序以及数据库参考搜索的索引。
关于GCG,Wisconsin软件包,支持的平台以及硬件需求的一般性信息可以在GCG的主页以及Wisconsin软件包的用户手册中找到。GCG主页提供了更新信息以及Wisconsin软件包程序的完整列表。
SeqLab中可以使用多个序列分析程序的特性使用户可以应用这些程序顺序地回答相关问题或在对输入序列进行编辑后重复某项分析。而可以同时访问公用数据库和本机序列的优点使用户可以在一个分析中使用其中任意一种而不用先进行转换或格式化的工作。SeqLab可以解决的序列分析问题:
(1)在两条mRNA中寻找开放阅读框架,翻译并对比RNA与蛋白质序列
对两条相关的mRNA进行测序的用户可能希望寻找开放阅读框架(ORF)、翻译以及进行核酸与氨基酸序列间的两两对比。
把序列加入SeqLab Editor中,从Functions菜单中选中Map选项运行Map程序。Map输出文件包含了限制性酶切图和6种可能的翻译框架的ORF的显示。这些ORF的起始和终止位置可进行标记并选为SeqLab Editor中序列显示的范围,然后可用Edit菜单的Translate操作进行翻译。翻译结果自动出现在SeqLab Editor中。
两条相关的核酸或蛋白质序列可用Gap程序或BestFit程序进行对比。Gap程序寻找两条序列间的全局最优对比结果。适用于两条待比对的序列是进化相关的情况。BestFit程序寻找两条序列的局部最优对比结果,它适用于两条序列不是进化相关而是功能相关的情况。
(2)通过参考搜索寻找数据库中的相关条目并进行对比
研究一个特征序列家族成员的用户可能希望寻找这个家族中的其它成员并建立它们的多序列对比。
从Functions菜单中选取LookUp程序。LookUp在数据库条目的参考信息部分搜索描述词并建立匹配条目的列表。在参考部分的Definiton, Author, Keyword和Organism域中搜索描述词并在词之间使用“and”(&)、“or”(|)以及“but not”(!)布尔表达式。例如,在SWISS-PROT条目的Description域搜索“lactate & dehydrogenase & h & chain”将产生一个输出文件,其中列出了乳酸脱氢酶 H 链(lactate dehydrogenase H chain)条目。这个输出文件可以从Output Manager窗口中加以显示,然后与用户的序列一起添加到SeqLab Editor中。
要创建所有这些序列的多序列对比,只要根据序列名称选中这些序列并从Functions菜单中运行PileUp程序。由PileUp产生的多序列文件也列在Output Manager窗口中并可以直接添加到SeqLab Editor中。推荐采用这一步的原因在于数据库条目的特征表格(Features table)信息可与对比结果一起被包括进来。必要时对比结果是可以被编辑的,并且如果数据库条目有相似的特征,这些特征可被附加给用户序列。
(3)用查询序列搜索数据库,将找到的条目与查询序列进行对比并产生进化系统树
克隆并测序一个未知功能基因的用户可能希望在一个数据库中搜索相似的序列。如果搜索到了,用户可能进一步希望创建与查询序列最相似的序列的多序列对比并产生数据的种系图。
往SeqLab Editor中添加一个查询序列并从Functions菜单中选取FASTA程序。FASTA程序在数据库中搜索与查询序列相似的序列。输出文件可从Output Manager窗口中加以显示并直接添加到SeqLab Editor中。在这个输出文件中数据库条目与查询序列局部相似性最好的区域被加以标记。如果要显示的话,每个数据库条目只有这种区域可以显示在SeqLab Editor中。不要的条目可以从SeqLab Editor中一起被删除。
从Functions菜单中选中PileUp程序创建这些序列的多序列对比。输出可从Output Manager窗口中加以显示并添加到SeqLab Editor中更新已经存在的未对比序列。必要时可对这一对比结果进行编辑,并且数据库条目的有用的特征表格信息也可以添加给查询序列。
从Functions菜单中选取PaupSearch程序,程序提供了一个PAUP(进化系统简约性分析(Phylogenetic Analysis Using Parsimony))中树搜索方式的GCG接口。PaupDisplay程序为PAUP中的树操作,鉴定以及显示方式提供了一个GCG接口。
(4)拼接交叠序列片段产生一连续序列,寻找并翻译这一序列的编码区域并在数据库中搜索相似序列
克隆了一个基因,把它分解克隆为一组有交叠的序列片段并进行了测序的用户可能希望把这些序列片段重新组装为一条连续的序列。一旦contig拼接完成,用户可能希望在序列中寻找阅读框架,翻译并在数据库中搜索相似序列。
Fragment Assmbly System的程序可用于拼接交叠序列片段。GelStart程序创建一个项目。GelEnter程序把序列片段复制到项目中。GelMerge程序寻找片段之间的交叠并把它们拼接成contig。GelAssemble程序是一个编辑器,可用于编辑这些连续的部分并解决片段之间的冲突问题。所有这些程序都可以从Functions菜单中选取。一旦拼接完成,最终构成此contig的连续序列可以被保存为一个序列文件并添加到SeqLab Editor中。
使用Map、Frames、TestCode或Codon Preference程序可预测序列中的编码区(所有这些程序可以从Functions菜单中选中)。使用Edit菜单的Select Range功能选择这些程序预测的区域并使用Edit菜单中的翻译操作把它们翻译为蛋白质。这些提出的翻译区域也可以作为核酸共有序列的特征被加入。
选取蛋白质序列然后选择Functions菜单中BLAST。BLAST程序在数据库中搜索与查询序列相似的条目,此程序既可以进行远程搜索也可以进行本机搜索。搜索结果可以从Output Manager窗口中加以显示。如果被搜索的是一个本机的数据库,结果文件可以加入SeqLab Editor或Main List窗口中,并允许对找到的序列进行进一步分析。
(5)对比相关的蛋白质序列,计算对比结果的共有序列,辨识序列中新的特征序列模式,在数据库中搜索包含此模式的序列或在对比结果的共有序列中搜索已知的蛋白质模式
辨识了一组相关序列的用户可能希望对其进行对比并计算对比结果的共有序列。如果可以在对比结果中找到保守模式,用户可能希望在数据库中搜索包含这种模式的其它序列。用户可能还希望在计算出的共有序列搜索已知的蛋白质模式。
选取待对比的序列,从Functions菜单中选取PileUp程序创建多序列对比,PileUp程序的输出文件可从Output Manager窗口中加以显示并添加到SeqLab Editor中。用户可以对对比结果的某个区域重新加以对比并以此替换原有的对比结果。只要选取一个区域并重新运行PileUp即可。从PileUp Options窗口中选取"realign a portion of an existing alignment(重新对比一个已存在的对比结果的一部分)",这可能有利于选择一个替代评分矩阵或不同的创建和扩展处罚。新的输出文件将包含最初的对比结果以及替换原始对比结果的重新对比的区域。
用Edit菜单中Consensus操作计算对比结果的共有序列。如果保守模式可被辨识,从Functions菜单中选取FindPatterns选项。从共有序列中剪切下此特征序列模式并把它粘贴到FindPatterns模式选择器中,并在数据库中搜索包含这一模式的序列。
此外,运行Motif程序可在共有序列中搜索已知的蛋白质模式。Motif在蛋白质序列中搜索在PROSITE,蛋白质位点和模式的PROSITE字典中已知的蛋白质模式。如果辨识出一个Motif,则给所有序列增加一个特征,并标出它的位置。图4.9显示了一个蛋白质序列的匹配、一个共有序列以及Motif搜索的结果。
(6)使用Profile进行相似性搜索并对比相关序列