当前位置:首页 » 操作系统 » 进化算法应用

进化算法应用

发布时间: 2022-06-24 02:23:42

1. 各种进化算法有什么异同

(差异进化算法DE)是一种用于优化问题的启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法[1] 。同遗传算法一样,差异进化算法包含变异和交叉操作,但同时相较于遗传算法的选择操作,差异进化算法采用一对一的淘汰机制来更新种群。由于差异进化算法在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。 差异进化算法由Storn 以及Price [2]提出,算法的原理采用对个体进行方向扰动,以达到对个体的函数值进行下降的目的,同其他进化算法一样,差异进化算法不利用函数的梯度信息,因此对函数的可导性甚至连续性没有要求,适用性很强。

2. 进化算法中提出了那么多的改进,究竟什么算法才能够实际应用

IT行业中,研发中心开发的职业对算法要求很高。算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。算法中的指令描述的是一个计算,当其运行时能从一个初始状态和(可能为空的)初始输入开始,经过一系列有限而清晰定义的状态,最终产生输出并停止于一个终态。一个状态到另一个状态的转移不一定是确定的。随机化算法在内的一些算法,包含了一些随机输入。

3. 内点惩罚函数法和外点惩罚函数法各有什么特点

内点惩罚函数法特点:求解时的探索点始终保持在可行域内。

外点惩罚函数法特点:对初始点没有要求,可以任意取定义域内任意一点。

惩罚函数可以分为外点法和内点法,其中外点法更通用,可解决约束为等式和不等式混合的情形,外点法对初始点也没有要求,可以任意取定义域内任意一点。而内点法初始点必须为可行区内一点,在约束比较复杂时,这个选择内点法的初始点是有难度的,并且内点法只能解决约束为不等式情形。



罚函数的应用

1、电机优化设计

在电机优化设计中应用广义罚函数法优化方法,既可以避免罚函数内点法因罚因子取得不当而造成的寻优困难,又保留了寻优逼近边界的优点,通过目标函数调整和罚函数的容差迭代,可以达到快速收敛的目的。同时,广义罚函数优化方法,还具有边界附近进一步搜索最优点的特性。在应用中,该方法是一种实用性很强而有效的内点寻优方法。

在机械领域,利用广义罚函数优化方法编制的计算机寻优模块与各类外点法或可行方案寻求方法结合,具有显着的优化效果。

2、广义指数因子预测

该模型实施的关键在于预报方程的变量选择和系数估计,在线性回归模型的拟合过程中引入罚函数能够压缩回归方程系数估计,将方程中一部分自变量的系数压缩为0,从而达到自变量选择、降低误差方差的目的,并保证预报方程的稳定性,从而提高预测精度。因此,应用罚函数方法来实现广义指数因子预报方程的拟合是合理的。

4. 进化算法的特点

进化计算是一种具有鲁棒性的方法,能适应不同的环境不同的问题,而且在大多数情况下都能得到比较满意的有效解。他对问题的整个参数空间给出一种编码方案,而不是直接对问题的具体参数进行处理,不是从某个单一的初始点开始搜索,而是从一组初始点搜索。搜索中用到的是目标函数值的信息,可以不必用到目标函数的导数信息或与具体问题有关的特殊知识。因而进化算法具有广泛的应用性,高度的非线性,易修改性和可并行性。
此外,算法本身也可以采用动态自适应技术,在进化过程中自动调整算法控制参数和编码精度,比如使用模糊自适应法 。 进化策略(ES)是在1965年由Rechenberg和Schwefel独立提出的。
进化策略的一般算法
(1) 问题为寻找实值n维矢量x,使得函数F(x): R→R取极值。不失一般性,设此程序为极小化过程。
(2) 从各维的可行范围内随机选取亲本xi,i = 1, … , p的始值。初始试验的分布一般是均匀分布。
(3) 通过对于x的每个分量增加零均值和预先选定的标准差的高斯随机变量,从每个亲本xi产生子代xi’。
(4) 通过将适应度F(xi)和F(xi’),i=1,…,P进行排序,选择并决定那些矢量保留。具有最小适应度的P个矢量变成下一代的新亲本。
进行新试验,选择具有最小方差的新子代,一直到获得充分解,或者直到满足某个终止条件。
在这个模型中,把试验解的分量看做个体的行为特性,而不是沿染色体排列的基因。假设不管发生什么遗传变换,所造成各个个体行为的变化均遵循零均值和某个标准差的高斯分布。
由于基因多效性和多基因性,特定基因的改变可以影响许多表现型特征。所以在创造新子系时,较为合适的是同时改变亲本所有分量。
(1+1)—ES:
早期的进化策略的种群中只包含一个个体,并且只使用变异操作。在每一代中,变异后的个体与其父代进行比较,并选择较好的一个,这种选择策略被称为(1+1)策略。
(1+1)—ES的缺点:
(1) 各维取定常的标推差使得程序收敛到最优解的速度很慢;
(2) 点到点搜索的脆弱本质使得程序在局部极值附近容易受停滞的影响(虽然此算法表明可以渐近地收敛到全局最优点)。
(μ+λ)—ES:μ个亲本制造λ个子代,所有解均参加生存竞争,选出最好的μ个作为下一代的亲本。
(μ,λ)—ES:只有λ个子代参加生存竞争,在每代中μ个亲本被完全取代。
1.个体的表示法:
每个解矢量不仅包括了n维试验矢量x,而且还包括了扰动矢量σ,后者给出如何变异x以及它本身如何变异的指令。
2.变异:
设x为当前矢量。σ为对应于x每个维的方差矢量,于是新的解矢量x’,σ’可以这样产生:
3.交叉:
4.选择
在进化策略中,选择是按完全确定的方式进行。(μ,λ)—ES是从λ个子代个体集中选择μ(1<μ<λA=个最好的个体;(μ+λ)—ES是从父代和子代个体的并集中选择μ个最好的个体。虽然(μ+λ)—ES保留最优的个体能保证性能单调提高,但这种策略不能处理变化的环境,因此,目前选用最多的还是(μ,λ)—ES。 进化规划(EP)由Fogel在20世纪60年代提出。
1.表示法和适应值度量
进化规划假设—个有界子空间 ,其中ui<vi。搜索区域被扩展到I=R,即个体为目标变量向量,a=x∈I,进化规划把目标函数值通过比例变换到正值,同时加入某个随机改变θ来得到适应值 ,其中δ是比例函数。
2.变异
可简化为:
3.选择
在P个父代个体每个经过一次变异产生P个子代后,进化规划利用一种随机q竞争选择方法从父代和子代的集合中选择P个个体,其中q>1是选择算法的参数。

5. 进化算法的起源发展

进化计算包括遗传算法(Genetic Algorithms)、遗传规划(Genetic Programming)、进化策略(Evolution Strategies)和进化规划(Evolution Programming)4种典型方法。第一类方法比较成熟,现已广泛应用,进化策略和进化规划在科研和实际问题中的应用也越来越广泛。
遗传算法的主要基因操作是选种、交配和突变,而在进化规则、进化策略中,进化机制源于选种和突变。就适应度的角度来说遗传算法用于选择优秀的父代(优秀的父代产生优秀的子代),而进化规则和进化策略则用于选择子代(优秀的子代才能存在)。
遗传算法与遗传规划强调的是父代对子代的遗传链,而进化规则和进化策略则着重于子代本身的行为特性,即行为链。
进化规则和进化策略一般都不采用编码,省去了运作过程中的编码—解码手续更适用于连续优化问题,但因此也不能进行非数值优化。进化策略可以确定机制产生出用于繁殖的父代,而遗传算法和进化规则强调对个体适应度和概率的依赖。
此外,进化规则把编码结构抽象为种群之间的相似,而进化策略抽象为个体之间的相似。进化策略和进化规则已应用于连续函数优化、模式识别、机器学习、神经网络训练、系统辨识和智能控制的众多领域

6. 多目标差分进化算法

差分进化算法(Differential Evolution, DE)是一种基于群体差异的启发式随机搜索算法,该算法是由R.Storn和K.Price为求解Chebyshev多项式而提出的。是一种用于最佳化问题的后设启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法。

将问题的求解表示成"染色体"的适者生存过程,通过"染色体"群的一代代不断进化,包括复制、交叉和变异等操作,最终收敛到"最适应环境"的个体,从而求得问题的最优解或满意解。

差分进化算法类似遗传算法,包含变异,交叉操作,淘汰机制,而差分进化算法与遗传算法不同之处,在于变异的部分是随选两个解成员变数的差异,经过伸缩后加入当前解成员的变数上,因此差分进化算法无须使用概率分布产生下一代解成员。最优化方法分为传统优化方法和启发式优化方法两大类。传统的优化方法大多数都是利用目标函数的导数求解;而启发式优化方法以仿生算法为主,通过启发式搜索策略实现求解优化。启发式搜索算法不要求目标函数连续、可微等信息,具有较好的全局寻优能力,成为最优化领域的研究热点。

在人工智能领域中,演化算法是演化计算的一个分支。它是一种基于群体的元启发式优化算法,具有自适应、自搜索、自组织和隐并行性等特点。近年来,很多学者将演化算法应用到优化领域中,取得了很大的成功,并已引起了人们的广泛关注。越来越多的研究者加入到演化优化的研究之中,并对演化算法作了许多改进,使其更适合各种优化问题。目前,演化算法已广泛应用于求解无约束函数优化、约束函数优化、组合优化、多目标优化等多种优化问题中。

7. 进化算法的差分算法

差分进化算法(Differential Evolution, DE)是一种新兴的进化计算技术,或称为差分演化算法、微分进化算法、微分演化算法、差异演化算法。它是由Storn等人于1995年提出的,最初的设想是用于解决切比雪夫多项式问题,后来发现DE也是解决复杂优化问题的有效技术。DE与人工生命,特别是进化算法有着极为特殊的联系。
差分进化算法是基于群体智能理论的优化算法,通过群体内个体间的合作与竞争产生的群体智能指导优化搜索。但相比于进化算法,DE保留了基于种群的全局搜索策略,采用实数编码基于差分的简单变异操作和一对一的竞争生存策略,降低了遗传操作的复杂性。同时,DE特有的记忆能力使其可以动态跟踪当前的搜索情况,以调整其搜索策略,具有较强的全局收敛能力和鲁棒性,且不需要借助问题的特征信息,适于求解一些利用常规的数学规划方法所无法求解的复杂环境中的优化问题。
差分进化算法是一种基于群体进化的算法,具有记忆个体最优解和种群内信息共享的特点,即通过种群内个体间的合作与竞争来实现对优化问题的求解,其本质是一种基于实数编码的具有保优思想的贪婪遗传算法。
DE是一种用于优化问题的启发式算法。本质上说,它是一种基于实数编码的具有保优思想的贪婪遗传算法 。同遗传算法一样,DE包含变异和交叉操作,但同时相较于遗传算法的选择操作,DE采用一对一的淘汰机制来更新种群。由于DE在连续域优化问题的优势已获得广泛应用,并引发进化算法研究领域的热潮。
DE由Storn 以及Price提出,算法的原理采用对个体进行方向扰动,以达到对个体的函数值进行下降的目的,同其他进化算法一样,DE不利用目标函数的梯度信息,因此对目标的可导性甚至连续性没有要求,适用性很强。同时,算法与粒子群优化有相通之处 ,但因为DE在一定程度上考虑了多变量间的相关性,因此相较于粒子群优化在变量耦合问题上有很大的优势。算法的实现参考实现代码部分。

8. 在复杂的优化任务中,为什么进化算法可以保证比传统的确定性优化方法更好的性能

摘要 进化算法是模拟生物界的进化过程而产生的一种现代优化方法,作为一种有效的随机搜索方法,在优化方法中具有独特的优越性,有着非常重要的意义和及其广泛的应用。传统优化方法对目标函数解析性质要求较高,进化算法不需要目标函数的导数信息,具有隐式并行性,所以常用于解决一些复杂的、大规模的、非线性、不可微的优化问题。 首先,对无约束优化问题,分别设计了产生初始种群的一个有效方法,并设计了一个新的杂交算子和变异算子,该杂交算子具有局部搜索的部分功能,变异算子确定了个体的变异方向,当个体以某个概率沿着该变异方向进行随机扰动时,可能会产生更好的点。这种新的变异算子不仅保证了算法的全局搜索性而且充分考虑了目标函数的信息,避免了盲目性。使得针对无约束进化问题能迅速有效的找到全局最优点,减小运算代价。 其次,对于约束优化问题,本文在无约束优化问题变异算子的基础上,又设计了一种新的适用于约束问题的变异算子,首先求出个体所受的合作用力,然后以某个概率接收该合力方向作为搜索方向。该变异算子能有效地处理约束条件,使得进化后期种群中的个体几乎都为可行点。同时为了抛弃部分不可行点,设计了一个新的适应度函数,其仅仅依赖于个体的不可行度和目标函数值。 再次,对约束优化问题,采用粒子群算法对其进行进化求解;在此基础上构造了两个微粒群,一个以约束满足为目标,另一个以原目标函数为目标,同时在每一个微粒的进化过程中引入一项反映另一微粒群最好微粒的信息。 最后,仿真结果验证了本文所述方法的正确性与有效性。

热点内容
c缓存池 发布:2025-01-20 13:23:45 浏览:6
数控编程帅气宝塔图纸 发布:2025-01-20 13:22:15 浏览:871
共享文件夹加密软件 发布:2025-01-20 13:08:41 浏览:40
标识符是怎样存储的 发布:2025-01-20 13:08:39 浏览:894
怎么看安卓大屏什么牌子 发布:2025-01-20 13:08:35 浏览:258
ios开发java 发布:2025-01-20 13:02:42 浏览:881
速腾有侧灯的是哪个配置 发布:2025-01-20 13:01:53 浏览:371
社保用户名和密码都忘记了怎么办 发布:2025-01-20 12:55:55 浏览:321
最优存储形式是什么 发布:2025-01-20 12:51:32 浏览:27
centos编译php7 发布:2025-01-20 12:33:52 浏览:920